Determination of Shrimp Allergens in Meat Products by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry
-
摘要: 目的:建立超高效液相色谱-串联质谱(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)法检测肉制品中虾过敏原的定量方法。方法:选取基质较为复杂的肉制品(西式火腿、香肠和肉丸)作为研究对象。样品经磷酸盐缓冲液(Phosphate buffer solution,PBS)超声提取30 min,离心(10000 r/min,15 ℃,10 min)后加入乙腈去除脂肪,取样液加入内标肽段(2.5 μmol/L,40 μL)和胰蛋白酶(1 mg/mL,10 μL)在37 ℃下酶解16 h后上液质进行分析,样品经T3柱进行分离,0.1%甲酸-水溶液和乙腈梯度洗脱,多反应监测(multiple reaction monitoring,MRM)正离子模式采集数据,内标法定量。结果:采用该方法测定肉制品中虾过敏原蛋白含量,其中定量肽段在0.001~2.0 μmol/L范围内,线性关系良好,决定系数R2为1.0000,检出限为0.67 mg/kg,定量限为2.00 mg/kg;在三个加标浓度水平下,回收率为83.2%~104.5%,精密度为2.63%~7.92%。结论:该方法具有特异性强、灵敏度高和回收率好等优势,适用于肉制品中虾过敏原的筛查定量。
-
关键词:
- 超高效液相色谱-串联质谱法 /
- 肉制品 /
- 虾过敏原 /
- 特征肽段 /
- 原肌球蛋白
Abstract: Objective: To establish a method for the determination of shrimp allergens in meat products by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Methods: Meat products (cooked ham, sausages and meatballs) with complex matrix components were selected as the detection target. The samples were extracted by ultrasonic in phosphate buffer solution (PBS) for 30 min, and acetonitrile was added to remove fat after centrifugation (10000 r/min, 15 ℃, 10 min). Finally, trypsin (1 mg/mL, 10 μL) was added to the sample diluents which had been mixed with internal peptide (2.5 μmol/L, 40 μL), and the enzymolysis process lasted 16 h at 37 ℃ before UPLC-MS/MS analysis. The samples were separated on a T3 column, and eluted by gradient elution with 0.1% formic acid aqueous solution and acetonitrile. The data was collected by multiple reaction monitoring (MRM) in positive ion mode, and quantified by internal standard method. Results: The method was used to determine the content of shrimp allergen in meat products, and the quantitative peptide had a good linear relationship with the determination coefficients 1.0000 in the range of 0.001~2.0 μmol/L. The limits of detection was 0.67 mg/kg, and the limits of quantification was 2.00 mg/kg. The recovery was 83.2%~104.5% and the precision was 2.63%~7.92% at three spiked levels. Conclusion: The method has the advantages of strong specificity, high sensitivity and good recovery. It was suitable for the screening and quantification of shrimp allergens in meat products. -
表 1 质谱检测和定量过敏原的设置
Table 1. Analytical settings used for detection and quantification of allergens by mass spectrometry (MS)
肽段名称简写 肽段类型 序列 分子量(g/mol) 母离子(m/z) 子离子(m/z) 锥孔电压(V) 碰撞能量(eV) IR-10 定性 IQLLEEDLER 1257.42 629.6 1016.8# 2 21 242.2 2 21 IR-10* 内标 IQL*LEEDLER 1264.42 632.9 1023.7# 2 21 242.2 8 21 IR-9 定量 IVELEEER 1129.29 565.5 917.6# 4 17 213.3 4 17 IR-9* 内标 IVEL*EEER 1136.29 569.0 924.7# 38 22 213.3 38 22 注:#表示定量离子;IR-10*为IR-10的内标;IR-9*为IR-9的内标。 表 2 与其他检测虾过敏原技术对比
Table 2. Comparison with other techniques for detecting shrimp allergens
检测方法 样品基质 目标物 定量限
(mg/kg)对比数据来源 UPLC-MS/MS 西式火腿、
肉丸等原肌球蛋白
特征肽段2.00 本方法 LC-HRMS/MSa 鱼棒、蟹爪等 原肌球蛋白
特征肽段3.5 Stella等[29] HPLC-MSb 鸡肉肠、曲奇等 原肌球蛋白
特征肽段1.6 Wang等[30] qPCR 虾馅模型 16S rRNA 1 Fernandes等[33] ELISA 鱼糜、鳕鱼皮等 原肌球蛋白 1 Werner等[34] 电化学免疫
传感器细胞 原肌球蛋白
Pen a 10.15 μg/mL Jiang等[35] 注:a液相色谱-高分辨率串联质谱(liquid chromatography high-resolution tandem mass spectrometry,LC-HRMS/MS);b高效液相色谱-质谱( high performance liquid chromatography mass spectrometry,HPLC-MS)。 表 3 加标回收率和精密度(n=6)
Table 3. Recoveries and relative standard deviations (n=6)
添加浓度(mg/kg) 测定浓度(mg/kg) 回收率(%) 精密度(%) 2.00 1.67 83.2 6.44 5.25 4.54 86.5 7.92 20.00 20.90 104.5 2.63 注:mg/kg指过敏原蛋白质量/称样量。 表 4 样品测定结果(n=3)
Table 4. Determination of allergens in samples (n=3)
类别 样品编号 测定含量(mg/kg) 标签 香肠 1 46.7±4.2 √ 2 2.3±0.1 √ 3 2.7±0.2 √ 4 ND √ 西式火腿 5 ND √ 6 NQ — 7 ND √ 8 ND — 9 ND √ 10 ND — 11 ND — 12 ND √ 13 ND √ 14 ND — 15 ND √ 16 ND √ 17 ND — 肉丸 18 448.1±31.4 √ 19 ND — 20 ND — 注:—表示未标出;ND表示小于方法检出限;NQ表示小于方法定量限;编号1~4为香肠,5~17为西式火腿,18~20为肉丸。 -
[1] KABASSER S, HAFNER C, CHINTHRAJAH S, et al. Identification of Pru du 6 as a potential marker allergen for almond allergy[J]. Allergy,2021,76(5):1463?1472. doi: 10.1111/all.14613 [2] XU J Y, YE Y L, JI J, et al. Advances on the rapid and multiplex detection methods of food allergens[J]. Critical Reviews in Food Science and Nutrition,2022,62(25):6887?6907. [3] DAVIS C M, GUPTA R S, AKTAS O N, et al. Clinical management of seafood allergy[J]. The Journal of Allergy and Clinical Immunology: In Practice,2020,8(1):37?44. doi: 10.1016/j.jaip.2019.10.019 [4] MONERET-VAUTRIN D A, MORISSET M, FLABBEE J, et al. Epidemiology of life-threatening and lethal anaphylaxis: A review[J]. Allergy,2005,60(4):443?451. doi: 10.1111/j.1398-9995.2005.00785.x [5] MATRICARDI P M, KLEINE-TEBBE J, HOFFMANN H J, et al. EAACI molecular allergology user's guide[J]. Pediatric Allergy and Immunology,2016,27(S23):1?250. [6] 中华人民共和国卫生部. GB 7718-2011食品安全国家标准 预包装食品标签通则[S]. 北京: 中国标准出版社, 2011.Ministry of Health of the People's Republic of China. GB 7718-2011 National food safety standard. General rules for labeling of prepackaged foods[S]. Beijing: China Standard Press, 2011. [7] SENA-TORRALBA A, PALLáS-TAMARIT Y, MORAIS S, et al. Recent advances and challenges in food-borne allergen detection[J]. TrAC Trends in Analytical Chemistry,2020,132:116050. doi: 10.1016/j.trac.2020.116050 [8] HOLZHAUSER T, JOHNSON P, HINDLEY J P, et al. Are current analytical methods suitable to verify VITAL? 2.0/3.0 allergen reference doses for EU allergens in foods ?[J]. Food and Chemical Toxicology,2020,145(10):111709. [9] KOEBERL M, CLARKE D, LOPATA A L. Next generation of food allergen quantification using mass spectrometric systems[J]. Journal of Proteome Research,2014,13(8):3499?3509. doi: 10.1021/pr500247r [10] HOLZHAUSER T. Protein or no protein? Opportunities for DNA-based detection of allergenic foods[J]. Journal of Agricultural and Food Chemistry,2018,66(38):9889?9894. doi: 10.1021/acs.jafc.8b03657 [11] LI J, WANG H, CHENG J H. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications[J]. Critical Reviews in Food Science and Nutrition,2023,63(2):178?191. [12] COSTA J, FERNANDES T J R, VILLA C, et al. Advances in food allergen analysis: Innovative analytical tools for safety assessment. In food safety: Innovative analytical tools for safety assessment(Chapter 9)[M]. Massachusetts: Scrivener Publishing LLC, 2017: 306-360. [13] BIANCO M, CALVANO C D, VENTURA G, et al. Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry[J]. Food Control,2021,131(1):108443. [14] LóPEZ-PEDROUSO M, LORENZO J M, GAGAOUA M, et al. Current trends in proteomic advances for food allergen analysis[J]. Biology,2020,9(9):247. doi: 10.3390/biology9090247 [15] PERNER S P, HEUPEL L, ZIMMERMANN L, et al. Investigation of reduced ELISA recovery of almond and hazelnut traces from roasted nut samples by SDS-PAGE and mass spectrometry[J]. Journal of AOAC International,2019,102(5):1271?1279. doi: 10.5740/jaoacint.19-0055 [16] MONACI L, DE ANGELIS E, MONTEMURRO N, et al. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis[J]. TrAC Trends in Analytical Chemistry,2018,106:21?36. doi: 10.1016/j.trac.2018.06.016 [17] PlANQUE M, ARNOULD T, DIEU M, et al. Liquid chromatography coupled to tandem mass spectrometry for detecting ten allergens in complex and incurred foodstuffs[J]. Journal of Chromatography A,2017,1530:138?151. doi: 10.1016/j.chroma.2017.11.039 [18] PLANQUE M, ARNOULD T, DIEU M, et al. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs[J]. Journal of Chromatography A,2016,1464:115?123. doi: 10.1016/j.chroma.2016.08.033 [19] HUSCHEK G, B?NICK J, L?WENSTEIN Y, et al. Quantification of allergenic plant traces in baked products by targeted proteomics using isotope marked peptides[J]. LWT-Food Science & Technology,2016,74:286?293. [20] GOMAA A, BOYE J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS)[J]. Food Chemistry,2015,175:585?592. doi: 10.1016/j.foodchem.2014.12.017 [21] JI J, ZHU P, PI F, et al. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens[J]. Food Control,2017,74:79?88. doi: 10.1016/j.foodcont.2016.11.030 [22] 詹丽娜, 陈沁, 古淑青, 等. 超高效液相色谱-四级杆/静电场轨道阱高分辨质谱检测食品中的牛奶过敏原酪蛋白[J]. 色谱,2017,35(4):405?412. [ZHAN L N, CHEN Q, GU S Q, et al. Determination of milk allergen caseins in foods by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Chinese Journal of Chromatography,2017,35(4):405?412. doi: 10.3724/SP.J.1123.2016.10034 [23] MATTAROZZI M, MILIOLI M, BIGNARDI C, et al. Investigation of different sample pre-treatment routes for liquid chromatography-tandem mass spectrometry detection of caseins and ovalbumin in fortified red wine[J]. Food Control,2014,38:82?87. doi: 10.1016/j.foodcont.2013.10.015 [24] THIMO R, TAKI A C, OHNSTON E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology,2018,100:28?57. doi: 10.1016/j.molimm.2018.04.008 [25] KHORA S S. Seafood-associated shellfish allergy: A comprehensive review[J]. Immunological Investigations,2016,45(6):504?530. doi: 10.1080/08820139.2016.1180301 [26] ZHAO J, LI Y, XU L, et al. Insights into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing[J]. Food Chemistry,2022:132177. [27] KAMIIE J, OHTSUKI S, IWASE R, et al. Quantitative atlas of membrane transporter proteins: Development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria[J]. Pharmaceutical Research,2008,25(6):1469?1483. doi: 10.1007/s11095-008-9532-4 [28] JOHNSON P, BAUMGARTNER S, ALDICK T, et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods[J]. Journal of AOAC International,2011,94(4):1026?1033. doi: 10.1093/jaoac/94.4.1026 [29] STELLA R, SETTE G, MORESSA A, et al. LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products[J]. Food Chemistry,2020,331:127276. doi: 10.1016/j.foodchem.2020.127276 [30] WANG J H, GE M, SUN L, et al. Quantification of crustacean tropomyosin in foods using high-performance liquid chromatography-tandem mass spectrometry method[J]. Journal of the Science of Food and Agriculture,2021,101(12):5278?5285. doi: 10.1002/jsfa.11177 [31] BRUN V, MASSELON C, GARIN J, et al. Isotope dilution strategies for absolute quantitative proteomics[J]. Journal of Proteomics,2009,72(5):740?749. doi: 10.1016/j.jprot.2009.03.007 [32] BANTSCHEFF M, SCHIRLE M, SWEETMAN G, et al. Quantitative mass spectrometry in proteomics: A critical review[J]. Analytical and Bioanalytical Chemistry,2007,389(4):1017?1031. doi: 10.1007/s00216-007-1486-6 [33] FERNANDES T J R, COSTA J, OLIVEIRA M B P P, et al. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens[J]. Journal of Food Composition and Analysis,2018,72:7?14. doi: 10.1016/j.jfca.2018.05.012 [34] WERNER M T, F?STE C K, EGAAS E. Quantitative sandwich ELISA for the determination of tropomyosin from crustaceans in foods[J]. Journal of Agricultural & Food Chemistry,2007,55(20):8025?8032. [35] JIANG D, JI J, AN L, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors & Bioelectronics,2013,50:150?156. [36] 中国合格评定国家认可委员会. CNAS-TRL-011: 2020 轻工产品化学分析方法确认和验证指南[S]. 北京: 中国计量出版社, 2020.China National Accreditation Service for Conformity Assessment. CNAS-TRL-011: 2020 Guidelines for the validation and validation of chemical analysis methods for light industrial products[S]. Beijing: China Metrology Press, 2020. -