Effect of Different Drying Processes on the Quality of Ficus hirta Vahl.
-
摘要: 为比较晒干、熏硫干燥、真空冷冻干燥及50 ℃热风干燥四种干燥方式对五指毛桃品质的影响,本研究采用高效液相色谱法、气质联用色谱法等方法,对晒干、熏硫干燥、真空冷冻干燥、50 ℃热风干燥后的五指毛桃中的补骨脂素、总多酚、总黄酮、可溶性糖以及挥发性成分进行了测定,对五指毛桃品质差异进行综合评价。结果表明,晒干、熏硫干燥、真空冷冻干燥及50 ℃热风干燥分别将五指毛桃水分含量降低至15%(安全储存水分含量)所需的时间分别约为22、19、15和12 h。不同干燥方式对五指毛桃中的活性成分和挥发性成分均有一定的影响,补骨脂素含量分别为0.49 、0.60、0.35 和0.71 mg/g;多酚含量分别为1.50 、3.95、1.44和1.59 mg/g;黄酮含量分别为3.91、4.65、1.19、1.55 mg/g;可溶性糖含量分别为94.95、83.83、86.76、82.19 mg/g;气相色谱-质谱(GC-MS)分析结果表明,晒干、熏硫干燥、真空冷冻干燥和50 ℃热风干燥的五指毛桃样品中挥发性成分相对含量分别为75.20%、70.99%、57.18%和69.36%。在实际生产中,若天气晴好,采用晒干方式是最经济环保的干燥方式;若遇阴雨天气,则可选用50 ℃热风干燥。Abstract: In order to comprehensive evaluate the quality of Ficus hirta Vahl., which were dried under sun, fumigated by sulfur dioxide, dried by vacuum freezing, and dried by hot air at 50 ℃, the contents of psoralen, total polyphenols, total flavones, soluble sugars and volatile components were determined by HPLC and GC-MS. The results showed that 22, 19, 15 and 12 h was needed to reduce the moisture content of Ficus hirta Vahl. to 15% (safe storage moisture content), respectively. When Ficus hirta Vahl. were dried by sun drying, sulfur dioxide fumigated drying, vacuum freezing drying and 50 ℃ hot air drying, the contents of psoralen were 0.49, 0.60, 0.35 and 0.71 mg/g, respectively. The content of total polyphenols were 1.50, 3.95, 1.44 and 1.59 mg/g, respectively. The content of total flavonoids were 3.91, 4.65, 1.19, 1.55 mg/g, respectively. The content of soluble sugars were 94.95, 83.83, 86.76, 82.19 mg/g, respectively. GC-MS results showed that the relative contents of volatile components were 75.20% , 70.99% , 57.18% and 69.36% respectively in the samples dried by sun-drying, fumigation-sulfur drying, vacuum freeze-drying and 50 ℃ hot-air drying. In actual production, if the weather was fine, sun drying would be the most economical and environmentally friendly drying method. In case of overcast and rainy weather, 50 ℃ hot air drying would be used.
-
Key words:
- Ficus hirta Vahl. /
- drying /
- active component /
- volatile component /
- quality
-
表 1 不同干燥方式下五指毛桃中挥发性成分的含量(相对含量, %)
Table 1. Content of volatile component of Ficus hirta Vahl. under different drying processes ( relative content, %)
序号
名称
SD
SFD
VFD
50℃ HD
1
Acetic acid
乙酸
0.81±0.01
5.64±0.66
2.09±0.02
1.97±0.29
2
Hexanoic acid
己酸
24.44±6.79
11.01±1.37
12.25±0.13
6.71±0.92
3
Nonanoic acid
壬酸
?
?
1.03±0.00
?
4
Octanoic acid
辛酸
?
?
1.91±0.01
0.67±0.03
5
Butanal, 3-methyl-
3-甲基丁醛
0.43±0.00
0.95±0.05
?
?
6
Pentanal
戊醛
0.72±0.01
0.60±0.01
?
?
7
Hexanal
己醛
9.69±1.42
8.63±0.78
?
14.74±0.11
8
Heptanal
庚醛
2.20±0.11
2.28±0.19
?
?
9
2-Hexenal, (E)-
2-己烯醛,(E)-
0.21±0.00
0.20±0.00
?
?
10
Furfural
糠醛
?
1.08±0.00
?
?
11
Octanal
辛醛
3.12±0.01
2.22±0.04
1.14±0.00
3.29±0.03
12
2-Octenal, (E)-
2-辛烯醛,(E)-
3.71±0.00
3.49±0.01
?
?
13
2-Octenal, 2-butyl-
2-丁基-2-辛烯醛
1.52±0.00
1.20±0.02
2.21±0.03
0.44±0.33
14
Benzaldehyde
苯甲醛
?
1.39±0.00
0.80±0.00
1.75±0.05
15
Nonanal
壬醛
6.17±0.08
4.59±0.05
?
5.62±0.63
16
2-Furancarboxaldehyde, 5-methyl-
5-甲基呋喃醛
?
0.42±0.00
?
?
17
Decanal
癸醛
?
?
1.26±0.00
1.84±0.25
18
2,4-Nonadienal, (E,E)-
(E,E)-2,4-壬二烯醛
?
?
0.21±0.00
0.29±0.01
19
2-Dodecenal
反-2-十二烯醛
?
?
0.53±0.00
0.56±0.00
20
2-Undecenal
2-十一烯醛
?
?
?
0.27±0.00
21
2,4-Decadienal, (E,E)-
(E,E)-2,4-癸二烯醛
?
?
?
0.15±0.00
22
2,4-Heptadienal, (E,E)-
(E,E)-2,4-庚二烯醛
?
?
0.19±0.00
0.15±0.00
23
Benzyl alcohol
苯甲醇
?
0.17±0.00
?
?
24
2-Furanmethanol
糠醇
?
?
0.13±0.00
?
25
1-Hexanol
1-己醇
?
?
0.36±0.00
?
26
2(3H)-Furanone, dihydro-5-pentyl-
丙位壬内酯
0.52±0.01
0.62±0.02
0.39±0.00
0.14±0.00
27
Hexanoic acid, methyl ester
己酸甲酯
1.00±0.01
0.83±0.02
?
?
28
Hexanoic acid, ethyl ester
己酸乙酯
0.20±0.00
?
0.57±0.00
?
29
Octanoic acid, methyl ester
辛酸甲酯
0.19±0.00
?
?
?
30
Methyl salicylate
水杨酸甲酯
1.99±0.02
2.78±0.10
?
?
31
Hexadecanoic acid, methyl ester
棕榈酸甲酯
?
?
0.06±0.00
?
32
Di-sec-butyl phthalate
邻苯二甲酸二仲丁酯
?
?
0.89±0.00
?
33
2(3H)-Furanone, 5-ethyldihydro-
gamma-己内酯
1.55±0.17
?
?
?
34
Dodecane
十二烷
0.23±0.00
0.46±0.01
2.37±0.09
1.25±0.16
35
Cyclododecane
环十二烷
?
?
?
?
36
Tridecane
十三烷
0.81±0.01
2.58±0.27
3.97±0.09
?
37
Tetradecane
十四烷
0.65±0.00
1.71±0.02
0.96±0.0
0.70±0.02
38
Cyclotetradecane
环十四烷
?
?
0.13±0.00
?39
40
Pentadecane
十五烷
?
0.56±0.00
0.18±0.00
?
41
Acetoin
3-羟基-2-丁酮
?
?
0.61±0.00
?
42
2,3-Octanedione
2,3-辛二酮
0.39±0.00
0.39±0.00
?
?
43
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-
香叶基丙酮
?
?
0.51±0.00
0.34±0.00
44
3-Octen-2-one
3-辛烯-2-酮
0.58±0.00
?
?
?
45
trans-3-Nonen-2-one
3-壬烯-2-酮
?
?
?
0.39±0.05
46
3,5-Octadien-2-one
3,5 -辛二烯-2-酮
?
?
0.56±0.00
0.65±0.01
47
2-Cyclopenten-1-one, 3,4,4-trimethyl-
3,4,4-三甲基-2-环戊烯-1-酮
?
?
0.37±0.00
0.31±0.00
48
2-Pentadecanone, 6,10,14-trimethyl
植酮
0.30±0.00
?
?
0.09±0.00
49
1,3,5,7-Cyclooctatetraene
环辛四烯
?
?
0.28±0.00
?
50
Seychellene
西车烯
?
1.16±0.04
0.54±0.00
?
51
Cedrene
雪松烯
?
0.48±0.00
?
?
52
1,3-Hexadiene, 3-ethyl-2-methyl-
3-乙基-2-甲基-1,3-己二烯
?
?
?
0.48±0.00
53
Humulene
葎草烯
?
0.45±0.01
0.55±0.00
?
54
Cetene
Z-8-十六烯
?
0.46±0.00
?
0.02±0.00
55
1-Tetradecene
1-十四(碳)烯
?
?
0.29±0.00
?
56
Furan, 2-ethyl-
2-乙基呋喃
0.25±0.00
?
?
?
57
Furan, 2-pentyl-
2-戊基呋喃
8.60±0.46
6.48±0.16
5.85±0.06
7.22±0.30
58
Dibenzofuran
二苯并呋喃
?
0.15±0.01
?
?
59
Pyrazine, 2,3-dimethyl-
2,3-二甲基吡嗪
?
0.38±0.03
0.70±0.00
0.43±0.00
60
Pyrazine, trimethyl-
2,3,5-三甲基吡嗪
?
?
0.90±0.00
?
61
Pyrazine, tetramethyl-
2,3,5,6-四甲基吡嗪
?
?
7.90±0.01
17.89±0.30
62
Pyrazine, 3-ethyl-2,5-dimethyl-
3-乙基-2,5-甲基吡嗪
?
0.16±0.00
?
?
63
Naphthalene
萘
3.27±0.04
3.69±0.08
2.93±0.04
0.86±0.31
64
Naphthalene, 2-methyl-
2-甲基萘
1.34±0.00
1.90±0.06
0.71±0.00
0.13±0.00
65
Naphthalene, 2,6-dimethyl-
2,6-二甲基萘
?
?
0.03±0.00
?
66
Phenol, p-tert-butyl-
4-叔丁基苯酚
?
?
0.10±0.00
?
67
o-Xylene
邻二甲苯
?
?
0.29±0.00
?
68
Biphenyl
联苯
0.31±0.00
?
0.12±0.00
?
69
Indole
吲哚
?
?
0.19±0.00
?
70
Ethanone, 1,1'-(1,4-phenylene)bis-
1,4-二乙酰苯
?
?
0.12±0.00
?
71
Ethanone, 1-(1H-pyrrol-2-yl)-
2-乙酰基吡咯
?
1.88±0.05
?
?
Acids
酸类
25.2516.65 17.28 9.35
Aldehydes
醛类
27.7727.05 6.34 29.10
Alcohols
醇类
?0.17 0.49 -
Esters
酯类
5.454.23 1.91 0.14
Alkanes
烷烃类
1.695.31 7.61 1.95
Ketones
酮类
1.270.39 2.05 1.78
Terpenes
萜烯类
?2.55 1.66 0.51
Heterocyclic
杂环类
13.46
7.17
15.35
25.54
Others
其他类
0.31
7.47
4.49
0.99
Total
合计
75.20
70.99
57.18
69.36 -
[1] 澍宗万, 范崔生, 朱兆仪. 全国中草药汇编[M]. 上册. 北京: 人民卫生出版社, 1975: 155.SHU Z W, FAN C S, ZHU Z Y. The compilation of Chinese herbal medicines[M]. Beijing: People's Medical Publishing House, 1975: 155. [2] 王伟伟, 陈瑶. 五指毛桃的化学成分和药理作用研究进展[J]. 中国民族民间医药,2013,22(3):41?42. [WANG W W, CHEN Y. Research progress of chemical components and pharmacological actions of Ficus hirta Vahl[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2013,22(3):41?42. doi: 10.3969/j.issn.1007-8517.2013.03.028 [3] 劳景莉, 于旭东, 蔡泽坪, 等. 五指毛桃化学成分和药理作用研究进展[J]. 热带农业科学,2018,38(5):82?87. [LAO J L, YU X D, CAI Z P, et al. Research progress of chemical components and pharmacological actions of Ficus hirta Vahl doi: 10.12008/j.issn.1009-2196.2018.05.018J]. Chinese Journal of Tropical Agriculture,2018,38(5):82?87. doi: 10.12008/j.issn.1009-2196.2018.05.018 [4] 徐晚秀, 李静, 宋飞虎, 等. 中草药干燥现状[J]. 中药与临床,2015,6(2):114?118. [XU W X, LI J, SONG F H, et al. Current status of Chinese herbal medicine drying[J]. Pharmacy and Clinics of Chinese Materia Medica,2015,6(2):114?118. doi: 10.3969/j.issn.0517-6611.2014.24.028 [5] 李照莹, 黄晓兵, 周伟, 等. 不同热风干燥温度对高良姜片品质特性的影响[J]. 热带作物学报,2021,42(1):239?246. [LI Z Y, HUANG X B, ZHOU W, et al. Effect of hot air drying temperature on the quality characteristics of Alpinia officinarum Hance slices[J]. Chinese Journal of Tropical Crops,2021,42(1):239?246. doi: 10.3969/j.issn.1000-2561.2021.01.032 [6] 郭婷, 吴燕, 陈益能, 等. 热风干燥温度对大果山楂干燥产品品质的影响[J]. 食品工业,2020,41(8):184?188. [GUI T, WU Y, CHEN Y N, et al. Effect of hot air-drying temperature on the product quality for Malus domeri (Bois) ChevJ]. The Food Industry,2020,41(8):184?188. [7] 方伟, 胡慧, 刘慧芹, 等. 不同干燥温度对天麻主要成分含量的影响[J]. 怀化学院学报,2019,38(11):1?5. [FANG W, HU H, LIU H Q, et al. Effect of different drying temperatures on the main components content of Gastrodia elata[J]. Journal of Huaihua University,2019,38(11):1?5. doi: 10.16074/j.cnki.cn43-1394/z.2019.11.001 [8] 赵云青, 黄颖桢, 陈菁瑛, 等. 不同干燥温度对金线兰品质与有效成分的影响[J]. 福建农业学报,2017,32(7):807?809. [ZHAO Y Q, HUANG Y Z, CHEN J Y, et al. Quality and functional ingredients of Anoectochilus roxburghii (Wall.) Lindl. dried at various dehydration temperatures[J]. Fujian Journal of Agricultural Sciences,2017,32(7):807?809. doi: 10.19303/j.issn.1008-0384.2017.07.020 [9] 桂青, 周立军, 郑定华, 等. 热风干燥温度对五指毛桃品质影响的研究[J]. 食品工业科技,2021,42(21):249?261. [GUI Q, ZHOU L J, ZHENG D H, et al. Effects of hot-air drying temperature on the quality of Ficus hirta Vahl doi: 10.13386/j.issn1002-0306.2021010005J]. Science and Technology of Food Industry,2021,42(21):249?261. doi: 10.13386/j.issn1002-0306.2021010005 [10] 王凤贺, 丁冶春, 陈鹏枭, 等. 油茶籽热风干燥动力学研究[J]. 农业机械学报,2018,49(S1):426?432. [WANG F H, DING Y C, CHEN P X, et al. Investigation on hot-air drying of Camellia oleifera seeds[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(S1):426?432. doi: 10.6041/j.issn.1000-1298.2018.S0.058 [11] 曹健康. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.CAO J K. Physiological and biochemical experiment guidance of postharvest fruits and vegetables[M]. Beijing: China Light Industry Press, 2007. [12] 彭亮, 杨冰月, 程虎印, 等. 不同干燥方法对远志筒及根中主要化学成分的影响[J]. 中草药,2018,49(21):5010?5017. [PENG L, YANG B Y, CHENG H Y, et al. Effects of different drying methods on active constituents of root bark and root of Polygala tenuifolia[J]. Chinese Traditional and Herbal Drugs,2018,49(21):5010?5017. doi: 10.7501/j.issn.0253-2670.2018.21.009 [13] 杨玲, 陈建, 杨屹立, 等. 甘蓝型油菜籽热风干燥特性及其数学模型[J]. 现代食品科技,2014,30(8):144?150. [YANG L, CHEN J, YANG Y L, et al. Characteristics and mathematical models for hot-air-dried rapeseed (Brassica napus)[J]. Modern Food Science and Technology,2014,30(8):144?150. doi: 10.13982/j.mfst.1673-9078.2014.08.023 [14] 利宇恒, 王鹏远, 刘超威, 等. 不同干燥方法对北沙参中5种香豆素及多糖含量的影响分析[J]. 广东化工,2021,48(2):44?47,35. [LI Y H, WANG P Y, LIU C W, et al. Analysis on the influence of different drying methods on the five kinds of cumarin and polysaccharide content in Radix Glehniae[J]. Guangdong Chemical Industry,2021,48(2):44?47,35. doi: 10.3969/j.issn.1007-1865.2021.02.020 [15] 康明, 陶宁萍, 俞骏, 王锡昌, 吉林娟, 乐彩虹, 尹明雨. 不同干燥方式无花果干质构及挥发性成分比较[J]. 食品与发酵工业,2020,46(4):204?210. [KANG M. TAO N T, YU J, et al. Comparison of texture quality and volatile components of dried figs by different drying methods[J]. Food and Fermentation Industries,2020,46(4):204?210. doi: 10.13995/j.cnki.11-1802/ts.022456 [16] 邓爱平, 康传志, 张悦, 等. 熏硫对中药化学成分及药理作用的影响[J]. 药物分析杂志,2019,39(9):1542?1559. [LIU A P, KANG C Z, ZHANG Y, et al. Effects of sulfur fumigation on quality of traditional Chinese medicine[J]. Chinese Journal of Pharmaceutical Analysis,2019,39(9):1542?1559. doi: 10.16155/j.0254-1793.2019.09.02 [17] DEWANTO V, WU X Z, KAFUI K A, et al. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity[J]. Journal of Agricultural and Food Chemistry,2002,50:3010?3014. doi: 10.1021/jf0115589 [18] YANG M, ZHOU Z, GUO D A. A strategy for fast screening and identification of sulfur derivatives in medicinalPueraria species based on the fine isotopic pattern filtering method using ultra-highresolution mass spectrometry[J]. Anal Chim Acta,2015,894:44. doi: 10.1016/j.aca.2015.07.050 [19] 巨浩羽, 赵士豪, 赵海燕, 等. 中草药干燥加工现状及发展趋势[J]. 南京中医药大学学报,2021,37(5):786?796. [JU H Y, ZHAO S H, ZHAO H Y, et al. Present situation and developing trend on drying of chinese herbs[J]. Journal of Nanjing University of Traditional Chinese Medicine,2021,37(5):786?796. doi: 10.14148/j.issn.1672-0482.2021.0786 [20] 姜珊, 马青琳, 张康华, 等. 不同干燥方法对金银花叶主要成分的影响[J]. 中国饲料,2020(11):20?26. [JIANG S, MA Q L, ZHANG K H, et al. Effects of different drying methods on the main components of honeysuckle leaves[J]. China Feed,2020(11):20?26. doi: 10.15906/j.cnki.cn11-2975/s.20201105 [21] LOU S N, LAI Y C, HUANG J D, et al. Drying effect on flavonoid composition and antioxidant activity of immature kumquat[J]. Food Chemistry,2015,171:356?363. doi: 10.1016/j.foodchem.2014.08.119 [22] ALAGBE E E, AMLABU Y S, DANIEL E O, OJEWUMIM E. Effect of varying drying temperature on the soluble sugar and nutritional content of banana[J]. The Open Chemical Engineering Journal,2020,14:11?16. doi: 10.2174/1874123102014010011 [23] 颜廷才, 王前菊, 段肖杰, 等. 三种干燥方法对榴莲游离氨基酸和可溶性糖的影响[J]. 食品与发酵工业,2021,47(14):137?144. [YAN T C, WANG Q J, DUAN X J, et al. The effect of three drying methods on free amino acids and soluble sugar of durian[J]. Food and Fermentation Industries,2021,47(14):137?144. doi: 10.13995/j.cnki.11-1802/ts.026219 [24] BRATTOLIM, CISTERNINO E, DAMBRUOSO P, et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds[J]. Sensors,2013,13(12):16759?16800. doi: 10.3390/s131216759 [25] WU T, CADWALLADER K R. Identification of characterizing aroma components of roasted chicory ''coffee'' brews[J]. Journal of Agricultural and Food Chemistry,2019,67(50):13848?13859. doi: 10.1021/acs.jafc.9b0077610.1021/acs.jafc.9b00776.s001 -