[1]
|
刘中海, 高赛男, 秦冬玲, 等. 改性分子筛催化果糖脱水制5-羟甲基糠醛[J]. 南京工业大学学报:自然科学版,2020,42(1):56?61. [LIU Z H, GAO S N, QIN D L, et al. Modified molecular sieves for catalytic dehydration of fructose to 5-hydroxymethylfurfural[J]. Journal of Nanjing University of Technology: Natural Science Edition,2020,42(1):56?61.
|
[2]
|
PARVULESCU V I, BALU A M, KUBIKA D, et al. Hydrolysis of hemicellulose and derivatives-a review of recent advances in the production of furfural[J]. Frontiers in Chemistry,2019,6:146?175.
|
[3]
|
吴仁荣, 梁金花. 秸秆基磺化碳催化制备生物柴油[J]. 南京工业大学学报:自然科学版,2020,42(2):167?172. [WU R R, LIANG J H. Preparation of biodiesel from oleic acid catalyzed by straw stalk-based sulfonated carbon[J]. Journal of Nanjing University of Technology: Natural Science Edition,2020,42(2):167?172.
|
[4]
|
WALTER D, SHARMA V K, MENGSHAN L, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals[J]. Frontiers in Chemistry,2018,6:141?164. doi: 10.3389/fchem.2018.00141
|
[5]
|
DAHMEN N, LEWANDOWSKI I, ZIBEK S, et al. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives[J]. GCB Bioenergy,2019,11:107?117. doi: 10.1111/gcbb.12586
|
[6]
|
OKOLIE J A, NANDA S, DALAI A K, et al. Chemistry and specialty industrial applications of lignocellulosic biomass[J]. Waste and Biomass Valorization,2021,12:2145?2169. doi: 10.1007/s12649-020-01123-0
|
[7]
|
KOBAYASHI H, HOSAKA Y, HARA K, et al. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Green Chemistry,2014,16(2):637?644. doi: 10.1039/C3GC41357H
|
[8]
|
KANG S, FU J, ZHANG G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews,2018,94:340?362. doi: 10.1016/j.rser.2018.06.016
|
[9]
|
YUAN D, ZHAO N, WANG Y, et al. Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid[J]. Applied Catalysis B: Environmental,2018,240:182?192.
|
[10]
|
XIN H S, HU X, CAI C L, et al. Catalytic production of oxygenated and hydrocarbon chemicals from cellulose hydrogenolysis in aqueous phase[J]. Frontiers in Chemistry,2020,8:333?353. doi: 10.3389/fchem.2020.00333
|
[11]
|
ZENG M, PAN X. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: Progress, challenges, and future opportunities[J]. Catalysis Reviews,2020(1):445?490.
|
[12]
|
赵博, 胡尚连, 龚道勇, 等. 固体酸催化纤维素水解转化葡萄糖的研究进展[J]. 化工进展,2017,36(2):555?567. [ZHAO B, HU S L, GONG D Y, et al. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Progress in Chemical Industry,2017,36(2):555?567.
|
[13]
|
WILLIAM S MOK, ANTAL M J, VARHEGYI G. Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose[J]. Industrial & Engineering Chemistry Research,1992,31(1):94?100.
|
[14]
|
赵燕, 殷伟豪, 李泓泉, 等. 褐藻纤维素稀酸水解工艺优化[J]. 广东化工,2017,44(22):23?24. [ZHAO Y, YIN W H, LI H Q, et al. Optimization of hydrolysis process of algal cellulose dilute acid[J]. Guangdong Chemical Industry,2017,44(22):23?24. doi: 10.3969/j.issn.1007-1865.2017.22.010
|
[15]
|
FENG D X, LI L Z, FANG Y, et al. Separation of ionic liquid [Mmim] and glucose from enzymatic hydrolysis mixture of cellulose using alumina column chromatography[J]. Applied Microbiology and Biotechnology,2011,91(2):399?405. doi: 10.1007/s00253-011-3263-x
|
[16]
|
付霓虹, 袁玉国, 王景芸, 等. 酸性离子液体催化降解纤维素的研究[J]. 应用化工,2016,45(5):908?911. [FU N H, YUAN Y G, WANG J Y, et al. Cellulose degradation catalyzed by acid ionic liquids[J]. Applied Chemical Industry,2016,45(5):908?911. doi: 10.16581/j.cnki.issn1671-3206.20160201.007
|
[17]
|
MASAAKI, KITANO, DAIZO, et al. Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups[J]. Langmuir,2009,25(9):5068?5075. doi: 10.1021/la8040506
|
[18]
|
RINALDI R, PALKOVITS R, FERDI S. Depolymerization of cellulose using solid catalysts in ionic liquids[J]. Angewandte Chemie International Edition,2008,47(42):8047?8050. doi: 10.1002/anie.200802879
|
[19]
|
陆佳, 刘伟, 王欣, 等. 玉米秸秆衍生碳基固体酸的制备及其催化纤维素水解糖化[J]. 化工进展,2020,39(9):3635?3642. [LU J, LIU W, WANG X, et al. Preparation of carbon-based solid acid derived from corn stalk and its catalytic performance in hydrolysis and saccharification of cellulose[J]. Progress in Chemical Industry,2020,39(9):3635?3642. doi: 10.16085/j.issn.1000-6613.2019-1895
|
[20]
|
QI B, ANH V, RANIL W S, et al. Glucose production from lignocellulosic biomass using a membrane-based polymeric solid acid catalyst[J]. Biomass and Bioenergy,2018,117:137?145. doi: 10.1016/j.biombioe.2018.07.017
|
[21]
|
SHROTRI A, KOBAYASHI H, FUKUOKA A. Cellulose depolymerization over heterogeneous catalysts[J]. Accounts of Chemical Research,2018,51(3):761?768. doi: 10.1021/acs.accounts.7b00614
|
[22]
|
刘阳, 李文志. 苯改性催化剂催化纤维素水解选择性制葡萄糖[J]. 化学工程,2020,48(7):1?5. [LIU Y, LI W Z. Benzene-modified catalyst improving glucose selectivity in cellulose hydrolysis[J]. Chemical Engineering,2020,48(7):1?5.
|
[23]
|
CHUNG P W, CHARMOT A, OLATUNJI-OJO O A, et al. Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites[J]. Acs Catalysis,2014,4(1):302?310. doi: 10.1021/cs400939p
|
[24]
|
TO A T, CHUNG P W, KATZ A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: Importance of post-synthetic functionalization of the carbon surface[J]. Angewandte Chemie,2015,54(38):11050?11053. doi: 10.1002/anie.201504865
|
[25]
|
BEECK B O D, GEBOERS J, VYVER S V?D, et al. Conversion of (ligno) cellulose feeds to isosorbide with heteropoly acids and Ru on carbon[J]. ChemSusChem,2013,6(1):199?208. doi: 10.1002/cssc.201200610
|
[26]
|
TIAN J, WANG J, ZHAO S, et al. Hydrolysis of cellulose by the heteropoly acid H3PW12O40[J]. Cellulose,2010,17(3):587?594. doi: 10.1007/s10570-009-9391-0
|
[27]
|
LUO X X, WU H G, LI C H, et al. Heteropoly acid-based catalysts for hydrolytic depolymerization of cellulosic biomass[J]. Frontiers in Chemistry,2020,8:580146?580175. doi: 10.3389/fchem.2020.580146
|
[28]
|
SUN Z, CHENG M, LI H, et al. One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis[J]. RSC Advances,2012,2(24):9058?9065. doi: 10.1039/c2ra01328b
|
[29]
|
ZHANG F, FANG Z. Hydrolysis of cellulose to glucose at the low temperature of 423 K with CaFe2O4-based solid catalyst[J]. Bioresource Technology,2012,124:440?445. doi: 10.1016/j.biortech.2012.08.025
|
[30]
|
CAIO T, ATSUSHI T, AI I, et al. Highly active mesoporous Nb-W oxide solid-acid catalyst[J]. Angewandte Chemie,2010,49(6):1128?1132. doi: 10.1002/anie.200904791
|
[31]
|
隋松泉. 新型Al2O3载体负载的金属和复合金属氧化物催化剂制备, 结构及其催化化性能[D]. 北京: 北京化工大学, 2016.SUI S Q. The preparation and structure of spherical γ-Al2O3 support catalysts and the study of their catalytic performance[D]. Beijing: Beijing University of Chemical Technology, 2016.
|
[32]
|
MANAENKOV O V, KISLITSA O V, MATVEEVA V G, et al. Cellulose conversion into hexitols and glycols in water: Recent advances in catalyst development[J]. Frontiers in Chemistry,2019,7:834?841. doi: 10.3389/fchem.2019.00834
|
[33]
|
STIJN V?D?V, GEBOERS J, JACOBS P A, et al. Recent advances in the catalytic conversion of cellulose[J]. ChemCatChem,2011,3:82?94.
|
[34]
|
XU S, YAN X, BU Q, et al. Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts[J]. Cellulose,2017,24(6):2403?2413.
|
[35]
|
FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie International Edition,2006,45(31):5161?5163. doi: 10.1002/anie.200601921
|
[36]
|
LUO C, WANG S, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported Ruthenium clusters in hot water[J]. Angewandte Chemie,2010,119(40):7780?7783.
|
[37]
|
ADSUAR-GARCíA M D, FLORES-LASLUISA J X, AZAR F Z. Carbon-black-supported Ru catalysts for the valorization of cellulose through hydrolytic hydrogenation[J]. Catalysts,2018,8(12):572?586. doi: 10.3390/catal8120572
|
[38]
|
MATVEEVA V G, SULMAN E M, MANAENKOV O V, et al. Hydrolytic hydrogenation of cellulose in subcritical water with the use of the Ru-containing polymeric catalysts[J]. Catalysis Today,2017,280(1):45?50.
|
[39]
|
REY-RAAP N, RIBEIRO L S, óRF?O J J M, et al. Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials[J]. Applied Catalysis B: Environmental,2019,256:117826?117861. doi: 10.1016/j.apcatb.2019.117826
|
[40]
|
LUCíLIA S R, JUAN J D, óRF?O J J M, et al. Influence of the surface chemistry of multiwalled carbon nanotubes on the selective conversion of cellulose into sorbitol[J]. ChemCatChem,2017,9(5):888?896. doi: 10.1002/cctc.201601224
|
[41]
|
吕结, 韩金玉, 王华, 等. 焙烧温度对Pt/Al2O3催化剂催化纤维素转化性能的影响[J]. 中国科技论文,2014,9(6):623?627. [LV J, HAN J Y, WANG H, et al. Effect of calcination temperature on catalytic conversion of cellulose over Pt/Al2O3 catalyst[J]. Chinese Scientific Papers,2014,9(6):623?627. doi: 10.3969/j.issn.2095-2783.2014.06.001
|
[42]
|
HAN J W, LEE H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution[J]. Catalysis Communications,2012,19(19):115?118.
|
[43]
|
李闯. 纤维素及其平台分子催化氢化研究[D]. 合肥: 中国科学技术大学, 2020.LI C. Studies on the catalytic hydrogenation of cellulose and platform molecule[D]. Hefei: University of Science and Technology of China, 2020.
|
[44]
|
李侨光, 刘仕伟, 于世涛. 纤维素制多元醇催化技术研究进展[J]. 林产化学与工业,2015,35(4):145?150. [LI Q G, LIU S W, YU S T. Research progress on catalytic technologies for production of polyols from cellulose[J]. Forest Products Chemistry and Industry,2015,35(4):145?150. doi: 10.3969/j.issn.0253-2417.2015.04.023
|
[45]
|
LI Z Y, LIU Y, LIU C F, et al. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Bioresource Technology,2018,274:190?197.
|
[46]
|
LAZARIDIS P A, KARAKOULIA S A, TEODORESCU C, et al. High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon[J]. Applied Catalysis B:Environmental,2017,214(5):1?14.
|
[47]
|
PALKOVITS R, TAJVIDI K, RUPPERT A, et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communications,2011,47:576?578. doi: 10.1039/C0CC02263B
|
[48]
|
ROMERO A, NIETO-MáRQUEZ A, ALONSO E, et al. Bimetallic Ru: Ni/MCM-48 catalysts for the effective hydrogenation of D-glucose into sorbitol[J]. Applied Catalysis A: General,2017,529(5):49?59.
|
[49]
|
MARINELLI T, NABUURS S, PONEC V. Activity and selectivity in the reactions of substituted α, β-unsaturated aldehydes[J]. Journal of Catalysis,1995,151(2):431?438. doi: 10.1006/jcat.1995.1045
|
[50]
|
RIBEIRO L S, DELGADO J J, óRF?O J J M, et al. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol[J]. Applied Catalysis B: Environmental,2017,217(15):265?274.
|
[51]
|
TATHOD A P, PARESH L D. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts[J]. Bioresource Technology,2015,178:36?44. doi: 10.1016/j.biortech.2014.10.036
|
[52]
|
PANG J F, ZHENG M Y, SUN R Y, et al. Selectivity control for cellulose to diols: Dancing on the eggs[J]. ACS Catalysis,2017,7(3):1939?1954. doi: 10.1021/acscatal.6b03469
|
[53]
|
RIBEIRO L S, óRF?O J, óRF?O J J M, et al. Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru-W bimetallic catalysts[J]. Cellulose,2018,25(4):2259?2272. doi: 10.1007/s10570-018-1721-7
|
[54]
|
WIESFELD J J, PEROLJA P, ROLLIER F A, et al. Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts[J]. Molecular Catalysis,2019,473:110400?110410. doi: 10.1016/j.mcat.2019.110400
|
[55]
|
LI N X, ZHENG Y, WEI L F, et al. Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chemistry,2017,19(3):682?691. doi: 10.1039/C6GC01327A
|