Changes of Structure and in Vitro Digestion Properties of Starches in Desi Chickpea Cells Induced by Thermal Treatment
-
摘要: 鹰嘴豆因其营养价值高,血糖生成指数低的特性,引起研究者的广泛关注。本研究以分离的Desi鹰嘴豆细胞为模拟鹰嘴豆全食品的模型,探究不同热加工处理下细胞内淀粉的结构及体外消化动力学的变化。结果表明,Desi鹰嘴豆细胞的抗热性较强,热处理后所有样品内淀粉的糊化均不彻底,存在一定的晶体结构。随着处理温度的升高,淀粉的糊化温度升高且焓值降低。100 ℃热处理的样品(100D,70D-100)未检测到明显的焓值变化(ΔH<1.0 J/g),而高压热处理的样品(Pre-D)却呈现两个吸热焓值变化。红外光谱和体外消化动力学结果显示,甲酯化程度低的细胞样品,其消化速率和消化程度相对较高。因此,相较于热加工后Desi鹰嘴豆细胞中残留的淀粉晶体结构,由加工过程引起的细胞壁完整性变化可能更大程度地影响其淀粉底物的体外消化特性。本研究为慢消化鹰嘴豆食品加工提供一定理论指导。Abstract: Chickpeas have attracted wide attention of researchers owing to their high nutritional value and low glycemic index. In present study, intact cells isolated from Desi chickpeas were set as the whole chickpea food model to reveal the structure and in vitro digestion kinetics changes of starches in Desi chickpeas subjected to different thermal treatments. The results showed that starch granules in all cell samples were not fully gelatinizatized with certain amounts of relative crystallinity remained, indicating the strong resistance of cells to the thermal treatment. With the temperature of thermal treatment increased, the gelatinization temperature of starches in cell samples enhanced and the enthalpy value decreased. And no significant changes was observed for the enthalpy value of cell samples treated with 100 ℃ including 100D and 70D-100 (ΔH<1.0 J/g), whereas two endothermic peaks were observed for the pressure-heated cell samples (Pre-D). The results of Fourier transform infrared spectroscopy and in vitro digestion kinetics showed that cell samples with lower methyl esterification degree exhibited relatively higher digestion rate and extent. This result indicated that the cell wall structural changes induced by different thermal processing would cause a remarkable impact on the enzyme susceptibility to starch substrates in cells when compared with the remained crystal structure of starches. This study would provide a theoretical basis for the processing of slowly digested chickpea foods.
-
Key words:
- Desi chickpea /
- thermal treatment /
- cell wall /
- starch structure /
- in vitro digestion properties
-
图 1 不同热处理Desi鹰嘴豆细胞的普通光及偏振光学显微图
Figure 1. Light and polarized light microscopic images of chickpea cells (Desi) treated with different heat process
注:70D:70 ℃热分离Desi鹰嘴豆细胞;80D:80 ℃热分离Desi鹰嘴豆细胞;100D: 100 ℃热分离Desi鹰嘴豆细胞;70D-80: 70 ℃热分离Desi鹰嘴豆细胞进行80 ℃热处理;70D-100: 70 ℃热分离Desi鹰嘴豆细胞进行100 ℃热处理;Pre-D:高压加热分离Desi鹰嘴豆细胞;标尺(50 μm)。
表 1 不同热处理Desi鹰嘴豆细胞中淀粉的相对结晶度
Table 1. Relative crystallinity of starches in chickpea cells (Desi) treated with different heat processes
表 2 不同热处理Desi鹰嘴豆细胞中淀粉的热力学性质
Table 2. Thermal properties of starches in chickpea cells (Desi) treated with different heat processes
样品 峰Ⅰ 峰Ⅱ To(℃) Tp(℃) Tc(℃) ΔH(J/g) To(℃) Tp(℃) Tc(℃) ΔH(J/g) 70D 74.77±0.06b 82.60±0.70b 97.90±2.26a 3.15±0.12b ? ? ? ? 80D 82.85±0.07a 90.50±0.00a 99.10±0.00a 1.24±0.04d ? ? ? ? 100D ? ? ? ? ? ? ? ? 70D-80 83.95±0.07a 89.60±0.00a 96.65±0.92a 1.09±0.02d ? ? ? ? 70D-100 ? ? ? ? ? ? ? ? Pre-D 49.55±1.34d 57.80±0.71d 68.85±1.20c 2.34±0.03c 104.4±0.20 110.1±0.03 112.0±0.72 2.04±0.03 DS 62.40±0.10c 68.97±0.15c 76.53±0.31b 9.45±0.25a ? ? ? ? 注:“?”表示本样品中未检测到变化。 表 3 不同热处理Desi鹰嘴豆细胞的结构参数
Table 3. Fourier transform infrared spectra parameters of chickpea cells (Desi) treated with different heat process
样品 甲酯化程度 游离羧基 70D 1.23±0.01a 0.96±0.01a 80D 1.03±0.01b 0.94±0.01ab 100D 0.93±0.02c 0.83±0.01d 70D-80 1.03±0.03b 0.90±0.03c 70D-100 1.04±0.01b 0.91±0.03c Pre-D 1.01±0.01b 0.89±0.02c 表 4 不同热处理Desi鹰嘴豆细胞中淀粉的消化速率及消化程度
Table 4. Digestion rate and extent of starches in chickpea cells (Desi) treated with different heat processes
样品 消化速率(k, min?1) 消化程度(C300, %) 70D 0.0002 5.83±0.01d 80D 0.0002 5.87±0.01c 100D 0.0003 8.62±0.02b 70D-80 0.0002 5.89±0.03c 70D-100 0.0002 5.90±0.01c Pre-D 0.0004 11.35±0.01a 注:C300代表300 min淀粉的消化程度。 -
[1] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice,2022,183:109119. doi: 10.1016/j.diabres.2021.109119 [2] LEHMANN U, ROBIN F. Slowly digestible starch–its structure and health implications: a review[J]. Trends in Food Science & Technology,2007,18(7):346?355. [3] RIZKALLA S W, BELLISLE F, SLAMA G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals[J]. British Journal of Nutrition,2002,88(S3):255?262. doi: 10.1079/BJN2002715 [4] 马宏, 赵雅霞, 杨美娟, 等. 浅析鹰嘴豆粉的营养功能性及其应用[J]. 农产品加工,2021(14):17?19, 21. [MA H, ZHAO Y X, YANG M J, et al. The analysis of the nutrition function and application of chickpea flour[J]. Farm Products Processing,2021(14):17?19, 21. doi: 10.16693/j.cnki.1671-9646(X).2021.07.034 [5] NAYYAR H, KAUR S, SINGH S, et al. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield[J]. Journal of the Science of Food and Agriculture,2006,86(13):2076?2082. doi: 10.1002/jsfa.2574 [6] 缪铭, 江波, 张涛. Kabuli和Desi品种鹰嘴豆淀粉结构及功能性质[J]. 吉林大学学报 (工学版),2008,38(6):1495?1500. [MIAO M, JIANG B, ZHANG T. Structure and functional properties of chickpea starches of Kabuli and Desi varieties[J]. Journal of Jilin University (Engineering and Technology Edition),2008,38(6):1495?1500. [7] KAUR R, PRASAD K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)-A review[J]. Trends in Food Science & Technology,2021,109:448?463. [8] 熊玮彦. 蒸煮和湿热处理对杂豆细胞内淀粉结构及体外消化性的影响机制研究[D]. 广州: 华南理工大学, 2018.XIONG W Y. Mechanism for the structure features and digestion properties of starches in intact legume cells influenced by cooking and heat-moisture process[D]. Guangzhou: South China University of Technology, 2018. [9] RAZA H. 不同加工方法对鹰嘴豆理化及功能特性的影响及其在酸奶中的应用[D]. 无锡: 江南大学, 2019.RAZA H. Physico-chemical and functional characterization of chickpea (Cicer arietinum L. ) using different processing methods and its utilization in yogurt[D]. Wuxi: Jiangnan University, 2019. [10] GUO P, YU J, WANG S, et al. Insights into the starch gelatinization behavior inside intact cotyledon cells[J]. International Journal of Biological Macromolecules,2020,163:541?549. doi: 10.1016/j.ijbiomac.2020.06.238 [11] XIONG W, ZHANG B, DHITAL S, et al. Structural features and starch digestion properties of intact pulse cotyledon cells modified by heat-moisture treatment[J]. Journal of Functional Foods,2019,61:103500. doi: 10.1016/j.jff.2019.103500 [12] P?LCHEN K, BREDIE W L, DORINE D, et al. Effect of processing and microstructural properties of chickpea-flours on in vitro digestion and appetite sensations[J]. Food Research International,2022:111245. [13] DHITAL S, BHATTARAI R R, GORHAM J, et al. Intactness of cell wall structure controls the in vitro digestion of starch in legumes[J]. Food & Function,2016,7(3):1367?1379. [14] BHATTARAI R R, DHITAL S, WU P, et al. Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis[J]. Food & Function,2017,8(7):2573?2582. [15] AGUILERA J M, CADOCHE L, LóPEZ C, et al. Microstructural changes of potato cells and starch granules heated in oil[J]. Food Research International,2001,34(10):939?947. doi: 10.1016/S0963-9969(01)00118-1 [16] WüRSCH P, DEL VEDOVO S, KOELLREUTTER B. Cell structure and starch nature as key determinants of the digestion rate of starch in legume[J]. The American Journal of Clinical Nutrition,1986,43(1):25?29. doi: 10.1093/ajcn/43.1.25 [17] KAUR M, SANDHU K S, AHLAWAT R, et al. In vitro starch digestibility, pasting and textural properties of mung bean: Effect of different processing methods[J]. Journal of Food Science and Technology,2015,52(3):1642?1648. doi: 10.1007/s13197-013-1136-2 [18] KON S, WAGNER J, BECKER R, et al. Optimizing nutrient availability of legume food products[J]. Journal of Food Science,1971,36(4):636?639. doi: 10.1111/j.1365-2621.1971.tb15149.x [19] ROVALINO-CORDOVA A M, FOGLIANO V, CAPUANO E. A closer look to cell structural barriers affecting starch digestibility in beans[J]. Carbohydr Polymers,2018,181:994?1002. doi: 10.1016/j.carbpol.2017.11.050 [20] LI P, ZHANG B, DHITAL S. Starch digestion in intact pulse cells depends on the processing induced permeability of cell walls[J]. Carbohydrate Polymers,2019,225:115204. doi: 10.1016/j.carbpol.2019.115204 [21] PALLARES A P, MIRANDA B A, TRUONG N Q A, et al. Process-induced cell wall permeability modulates the in vitro starch digestion kinetics of common bean cotyledon cells[J]. Food & Function,2018,9(12):6544?6554. [22] 王苗苗, 丁丽, 张新, 等. 不同加工方式下芸豆子叶细胞内淀粉结构及体外消化特性的对比分析[J]. 现代食品科技,2021,37(1):101?110. [WANG M M, DING L, ZHANG X, et al. Comparative analysis of structural and in vitro digestion properties of starch in cotyledon cells of pinto bean processed by different methods[J]. Modern Food Science and Technology,2021,37(1):101?110. doi: 10.13982/j.mfst.1673-9078.2021.01.0123 [23] LOPEZ-RUBIO A, FLANAGAN B M, GILBERT E P, et al. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study[J]. Biopolymers,2008,89(9):761?768. [24] 李萍. 杂豆细胞壁对胞内淀粉结构及消化性的影响机理研究[D]. 广州: 华南理工大学, 2019.LI P. Mechanistic study of the structural features and digestion properties of starches in intact pulse cells[D]. Guangzhou: South China University of Technology, 2019. [25] ZOBEL H, YOUNG S, ROCCA L. Starch gelatinization: An X-ray diffraction study[J]. Cereal Chem,1988,65(6):443?446. [26] SHAO Y, MAO L, GUAN W, et al. Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches[J]. International Journal of Biological Macromolecules,2020,164:427?433. doi: 10.1016/j.ijbiomac.2020.07.054 [27] WANG S, LI C, COPELAND L, et al. Starch retrogradation: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(5):568?585. doi: 10.1111/1541-4337.12143 [28] HOOVER R, HUGHES T, CHUNG H, et al. Composition, molecular structure, properties, and modification of pulse starches: A review[J]. Food Research International,2010,43(2):399?413. doi: 10.1016/j.foodres.2009.09.001 [29] HOOVER R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review[J]. Carbohydrate Polymers,2001,45(3):253?267. doi: 10.1016/S0144-8617(00)00260-5 [30] PRATIWI M, FARIDAH D N, LIOE H N. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review[J]. Starch-St? rke,2018,70(1?2):1700028. [31] LI P, DHITAL S, FU X, et al. Starch digestion in intact pulse cotyledon cells depends on the extent of thermal treatment[J]. Food Chemistry,2020,315:126268. doi: 10.1016/j.foodchem.2020.126268 [32] DING L, HUANG Q, LI H, et al. Controlled gelatinization of potato parenchyma cells under excess water condition: Structural and in vitro digestion properties of starch[J]. Food & Function,2019,10(9):5312?5322. [33] LI P, HE X, DHITAL S, et al. Structural and physicochemical properties of granular starches after treatment with debranching enzyme[J]. Carbohydrate Polymers,2017,169:351?356. doi: 10.1016/j.carbpol.2017.04.036 [34] WILLATS W G, ORFILA C, LIMBERG G, et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: Implications for pectin methyl esterase action, matrix properties, and cell adhesion[J]. Journal of Biological Chemistry,2001,276(22):19404?19413. doi: 10.1074/jbc.M011242200 [35] MANRIQUE G D, LAJOLO F M. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit[J]. Postharvest Biology and Technology,2002,25(1):99?107. doi: 10.1016/S0925-5214(01)00160-0 [36] DE ROECK A, SILA D N, DUVETTER T, et al. Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue[J]. Food Chemistry,2008,107(3):1225?1235. doi: 10.1016/j.foodchem.2007.09.076 [37] AL-RABADI G J, GILBERT R G, GIDLEY M J. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase[J]. Journal of Cereal Science,2009,50(2):198?204. doi: 10.1016/j.jcs.2009.05.001 [38] ZHANG B, DHITAL S, GIDLEY M J. Densely packed matrices as rate determining features in starch hydrolysis[J]. Trends in Food Science & Technology,2015,43(1):18?31. [39] XIONG W, ZHANG B, HUANG Q, et al. Variation in the rate and extent of starch digestion is not determined by the starch structural features of cooked whole pulses[J]. Food Hydrocolloids,2018,83:340?347. doi: 10.1016/j.foodhyd.2018.05.022 -