Optimization and Characterization of Extraction Technology of Soluble Dietary Fiber from Yam Peel Residue
-
摘要: 为充分开发山药皮的利用价值,以山药皮残渣为原料,通过正交试验,探究碱法提取山药皮残渣中可溶性膳食纤维(Soluble Dietary Fiber,SDF)的最佳提取工艺条件。利用X射线衍射(X-ray diffraction,XRD)图谱、傅里叶红外光谱(Fourier infrared spectroscopy,FT-IR)、扫描电镜(Scanning Electron Microscopy,SEM)对提取物进行表征,并对其膨胀率(Swelling Capacity,SC)、持水力(Water Holding Capacity,WHC)、持油力(Oil Holding Capacity,OHC)等理化性质进行测定。结果表明,碱法提取山药皮残渣SDF的最优工艺为提取时间90 min,NaOH浓度12 g/L,液固比40:1(mL:g),提取温度为80 ℃;在最优工艺下,山药皮残渣SDF得率为11.52%±0.23%;山药皮残渣SDF属于纤维素I型,其红外吸收峰呈现出典型的多糖吸收峰;SEM结果显示,山药皮残渣SDF是由多个细小颗粒团聚在一起而形成的疏松结构;与山药皮SDF相比,山药皮残渣SDF有着更好的膨胀率、持水力、持油力,分别为7.63±0.32 mL/g、9.81±0.21 g/g、4.45±0.24 g/g。综上,山药皮残渣SDF有着良好的理化性质,这使其有成为功能性食品中有效成分的潜在价值。Abstract: In order to fully exploit the utilization value of Chinese yam peel, the optimal extraction conditions of soluble dietary fiber (SDF) from Chinese yam peel residue were investigated by orthogonal experiment. The extracts were characterized by X-ray diffraction (XRD) pattern, Fourier infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). And the physical and chemical properties of its swelling capacity (SC), water holding capacity (WHC) and oil holding capacity (OHC) were determined. The results showed that the optimal extraction process was 90 min, NaOH concentration was 12 g/L, liquid-solid ratio was 40:1(mL:g), and extraction temperature was 80 ℃. Under the optimal process, the SDF yield of yam peel residue was 11.52%±0.23%. SDF of yam peel residue belongs to cellulose type I, and its infrared absorption peak showed typical polysaccharide absorption peak. SEM results showed that the SDF of yam peel residue was a loose structure formed by many fine particles. Compared with SDF of yam peel, SDF of yam peel residue had better expansion rate, water holding capacity and oil holding capacity (7.63±0.32 mL/g, 9.81±0.21 g/g, 4.45±0.24 g/g, respectively). In conclusion, SDF of Chinese yam peel residue had good physical and chemical properties, which made it potential value as an effective ingredient in functional food.
-
表 1 正交试验因素水平及编码
Table 1. Levels and codes of experimental factors
编码水平 因素 A提取时间
(min)B液固比
(mL/g)CNaOH浓度
(g/L)D温度
(℃)1 70 30 10 70 2 80 40 12 80 3 90 50 14 90 表 2 正交试验结果
Table 2. Results of orthogonal test
实验号 A(min) B(mL/g) C(g/L) D(℃) SDF(%) 1 70 30 10 70 4.24±0.12 2 70 40 12 80 10.45±0.06 3 70 50 14 90 9.27±0.08 4 80 30 12 90 7.62±0.09 5 80 40 14 70 8.63±0.09 6 80 50 10 80 6.32±0.10 7 90 30 14 80 8.15±0.08 8 90 40 10 90 7.82±0.06 9 90 50 12 70 11.35±0.12 K1 7.933 6.600 6.607 8.003 K2 7.533 9.000 9.800 8.300 K3 9.067 8.933 8.667 8.200 R 1.534 2.400 3.773 0.276 表 3 山药皮残渣SDF得率方差分析
Table 3. Variance analysis of SDF yield of yam peel residue
方差来源 偏差平方和 自由度 F值 显著性 A 3.796 2 34.857 0.028 B 11.209 2 102.939 0.01 C 21.982 2 201.878 0.005 D 0.109 2 0.029 0.972 表 4 山药皮SDF与山药皮残渣SDF特性分析
Table 4. SDF and SDF characteristics of yam peel residue
样品 SC(mL/g) WHC(g/g) OHC(g/g) 得率(%) 山药皮SDF 4.19±0.23b 5.38±0.18b 2.41±0.15b 20.56±0.31a 山药皮残渣SDF 7.63±0.32a 9.81±0.21a 4.45±0.24a 11.52±0.23b 注:同列不同字母表示差异性显著,P<0.05。 -
[1] DE MENEZES E W, GIUNTINI E B, DAN M C T, et al. Codex dietary fibre definition–Justification for inclusion of carbohydrates from 3 to 9 degrees of polymerisation[J]. Food Chemistry,2013,140(3):581?585. doi: 10.1016/j.foodchem.2013.02.075 [2] ELLEUCH M, BEDIGIAN D, ROISEUX O, et al. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review[J]. Food Chemistry,2011,124(2):411?421. doi: 10.1016/j.foodchem.2010.06.077 [3] MUDGIL D, BARAK S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review[J]. International Journal of Biological Macromolecules,2013,61:1?6. doi: 10.1016/j.ijbiomac.2013.06.044 [4] DAOU C, ZHANG H. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran[J]. Journal of Food Science and Technology,2014,51(12):3878?3885. doi: 10.1007/s13197-013-0925-y [5] LIU Y L, FAN C H, TIAN M, et al. Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber[J]. Journal of Food Processing and Preservation,2017,41(6):e13292. doi: 10.1111/jfpp.13292 [6] 张德纯. 焦作铁棍山药[J]. 中国蔬菜,2019(4):102. [ZHANG D C. Jiaozuo iron stick yam[J]. China Vegetables,2019(4):102. doi: 10.19928/j.cnki.1000-6346.2019.04.024 [7] MA F Y, ZHANG Y, YAO Y N, et al. Chemical components and emulsification properties of mucilage from Dioscorea opposite Thunb[J]. Food Chemistry,2017,228:315?322. doi: 10.1016/j.foodchem.2017.01.151 [8] TEJADA-ORTIGOZA V, GARCIA-AMEZQUITA L E, TORRES J A, et al. Chemical processes for the extraction and modification of dietary fiber[M]. Science and Technology of Fibers in Food Systems. Springer, Cham, 2020: 343-361. [9] WANG W J, MA X B, XU Y T, et al. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method[J]. Food Chemistry,2015,178:106?114. doi: 10.1016/j.foodchem.2015.01.080 [10] SUN J T, ZHANG Z C, XIAO F G, et al. Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues[C]// IOP Conference Series: Materials Science and Engineering, 2018, 392 ( 5 ) : 052005. [11] MENG X M, LIU F, XIAO Y, et al. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment[J]. Food Chemistry: X,2019,3:100029. doi: 10.1016/j.fochx.2019.100029 [12] WANG H O, LIU S H, ZHOU X J, et al. Treatment with hydrogen peroxide improves the physicochemical properties of dietary fibres from Chinese yam peel[J]. International Journal of Food Science and Technology,2020,55(3):1289?1297. doi: 10.1111/ijfs.14405 [13] HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8[J]. Matter and Radiation at Extremes,2020,5(1):018403. doi: 10.1063/1.5126038 [14] WANG K L, LI M, WEN X, et al. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity[J]. International Journal of Biological Macromolecules,2018,114:1056?1063. doi: 10.1016/j.ijbiomac.2018.03.145 [15] GAN J P, HUANG Z Y, YU Q, et al. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel[J]. Food Hydrocolloids,2020,101:105549. doi: 10.1016/j.foodhyd.2019.105549 [16] WANG L, XU H B, YUAN F, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry,2015,185:90?98. doi: 10.1016/j.foodchem.2015.03.112 [17] 吴婧, 刘祚祚, 吴杰, 等. 滇橄榄果渣膳食纤维的提取及其体外吸附性能研究[J]. 食品工业科技,2022,43(2):174?181. [WU J, LIU Z Z, WU J, et al. Extraction and in vitro adsorption properties of dietary fiber from Phyllanthus emblica Linn. pomace[J]. Science and Technology of Food Industry,2022,43(2):174?181. [18] 高晓丽, 王瑞, 闫艳华, 等. 碱法提取黍米粉膳食纤维的研究[J]. 安徽农学通报,2017,23(21):105?107. [GAO X L, WANG R, YAN Y H, et al. Study on extraction of dietary fiber from millet flour by alkaline method[J]. Anhui Agricultural Science Bulletin,2017,23(21):105?107. doi: 10.3969/j.issn.1007-7731.2017.21.043 [19] 邹兰, 任国文, 李梁. 碱法制备苹果梨渣膳食纤维工艺优化及物化特性研究[J]. 粮食与油脂,2019,32(4):72?75. [ZOU L, REN G W, LI L. Study on optimizing technology and physicochemical properties of dietary fiber from apple-pear pomace prepared by alkali method[J]. Cereals and Oils,2019,32(4):72?75. doi: 10.3969/j.issn.1008-9578.2019.04.021 [20] GARCIA-AMEZQUITA L E, TEJADA-ORTIGOZA V, SERNA-SALDIVAR S O, et al. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients[J]. Food and Bioprocess Technology,2018,11(8):1439?1463. doi: 10.1007/s11947-018-2117-2 [21] 郭艳峰, 李晓璐. 菠萝叶可溶性膳食纤维碱法提取工艺的优化[J]. 保鲜与加工,2019,19(5):104?108. [GUO Y F, LI X L. Optimazation of alkali extraction technique of soluble dietary fiber from pineapple leaf[J]. Storage and Process,2019,19(5):104?108. [22] FRENCH A D, SANTIAGO CINTRóN M. Cellulose polymorphy, crystallite size, and the segal crystallinity index[J]. Cellulose,2013,20(1):583?588. doi: 10.1007/s10570-012-9833-y [23] JIANG Y P, ZI W, PEI Z F, et al. Characterization of polysaccharides and their antioxidant properties from Plumula nelumbinis[J]. Saudi Pharmaceutical Journal,2018,26(5):656?664. doi: 10.1016/j.jsps.2018.02.026 [24] MA Q Y, MA Z Y, WANG W X, et al. The effects of enzymatic modification on the functional ingredient-dietary fiber extracted from potato residue[J]. LWT,2022,153:112511. doi: 10.1016/j.lwt.2021.112511 [25] YANG B, WU Q J, SONG X, et al. Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment[J]. International Journal of Food Science and Technology,2019,54(7):2363?2373. doi: 10.1111/ijfs.14134 [26] WANG K L, LI M, WANG Y X, et al. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids,2021,110:106162. doi: 10.1016/j.foodhyd.2020.106162 [27] 桑嘉玘, 辜青青, 徐玉娟, 等. 提取方法对柚皮海绵层不溶性膳食纤维理化性质、功能及结构的影响[J]. 食品与发酵工业,2022,48(3):149?154. [SANG J Q, GU Q Q, XU Y J, et al. Effects of extraction methods on the physicochemical properties, function and structure of insoluble-soluble dietary fiber in sponge layer of pomelo peel[J]. Food and Fermentation Industries,2022,48(3):149?154. [28] XIE F, WANG Y Q, WU J H, et al. Functional properties and morphological characters of soluble dietary fibers in different edible parts of Angelica keiskei[J]. Journal of Food Science,2016,81(9):2189?2198. doi: 10.1111/1750-3841.13399 [29] JIA M, CHEN J, LIU X, et al. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation[J]. Food Hydrocolloids,2019,94:468?474. doi: 10.1016/j.foodhyd.2019.03.047 -