In Silico Analysis of Novel DPP-IV Inhibitory Peptides Released from Camel Milk Lactoferrin and the Possible Pathways Involved in Diabetes Protection
-
摘要: 目的:结合生物信息学,从驼乳乳铁蛋白(Lactoferrin,LF)中筛选DPP-IV(Dipeptidyl peptidase IV,DPP-IV)抑制肽,并利用网络药理学探讨筛选肽段对糖尿病的潜在作用机制。方法:利用BIOPEP网站模拟酶切LF序列产生多条肽段,结合多肽数据库及分子对接筛选潜在的DPP-IV抑制肽,选择其中四条进行人工合成,验证其DPP-IV抑制活性,通过分子对接分析肽段与DPP-IV分子间相互作用方式,Lineweaver-Burk方法分析肽段抑制模式。选择抑制作用较强的GPQY进行网络药理学分析,预测其对糖尿病的潜在作用机制。采用Swiss Target Prediction和GeneCards数据库挖掘GPQY及糖尿病的作用靶点,String数据库获取蛋白与蛋白互作关系,Cytoscape 3.9.0软件构建PPI网络,DAVID数据库对靶点进行GO与KEGG通路富集分析。结果:筛选验证获得2条DPP-IV抑制GPQY和EACAF,其半抑制浓度(IC50)值分别为348.27±16.11和1024.89±19.67 μmol/L,抑制模式分析表明GPQY为竞争性抑制,EACAF为混合型抑制。分子对接结果显示两条肽段通过氢键、疏水作用和静电作用与DPP-IV结合。由PPI网络筛选到GPQY有STAT3、MMP9、SRC、MAPK1等25个核心作用靶点,KEGG通路富集显示GPQY防治糖尿病通路涉及IL-17信号通路、肿瘤坏死因子(TNF)信号通路、肾素-血管紧张素系统、细胞凋亡等。 结论:驼乳LF是DPP-IV抑制肽的良好来源,由其获得的四肽GPQY可通过多靶点、多通路参与炎症反应,影响细胞增殖分化等多方面防治糖尿病及其并发症。Abstract: Objective: To screen novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from camel milk lactoferrin (LF) combined with bioinformatics. Network pharmacology was used to explore the potential mechanism of action of screened peptides on diabetes. Methods: Multiple peptides were generated by simulated enzymatic cleavage of lactoferrin using the BIOPEP website. Screening target peptides by combining peptide databases and molecular docking. Four of them were selected for solid-phase synthesis to verify their DPP-IV inhibitory activity. Molecular docking was performed to analyze the interaction between the peptide and DPP-IV molecules, and the Lineweaver-Burk method was used to analyze the inhibition mode of the peptide. Then, GPQY with stronger inhibition was selected for network pharmacological analysis to predict its potential mechanism of action on diabetes. Furthermore, the active targets of GPQY and diabetes were mined from the Swiss Target Prediction and Gene Cards databases, and the String database was used to obtain protein-protein interaction relationships. The PPI networks were built by Cytoscape 3.9.0 software, and the DAVID database was exploited for enrichment analysis of GO and KEGG signaling pathways for key targets. Results: Two DPP-IV inhibitory peptides were obtained with semi-inhibitory concentration (IC50) values of 348.27±16.11 and 1024.89±19.67 μmol/L. Inhibition pattern analysis indicated competitive inhibition of GPQY and mixed-type inhibition of EACAF. Molecular docking results revealed two peptides bound to the active pocket of DPP-IV through hydrogen bonding, hydrophobic interactions and electrostatic interactions. From the PPI network analysis, GPQY had 25 core-acting targets, including STAT3, MMP9, SRC, and MAPK1. The enrichment results were based on KEGG pathways, which showed that GPQY was involved in the IL-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, renin-angiotensin system, apoptosis, etc. Conclusion: Camel milk lactoferrin is a good source of DPP-IV inhibitor peptide. GPQY could prevent diabetes and its complications through multiple targets and pathways involved in the inflammatory response and cell proliferation and differentiation.
-
表 1 模拟酶切结果
Table 1. Simulation of digestion results
蛋白酶种类 模拟酶解产
生肽段数目去除重复肽
段后数目特有肽
段数Peptide ranker
得分>0.5胰蛋白酶Trypsin
(EC3.4.21.4)75 73 72 23(32%) 胃蛋白酶pepsinpH1.3
(EC3.4.23.1)82 77 26 32(42%) 胰凝乳蛋白酶
Chymotrypsin
(EC3.4.21.1)125 110 49 33(30%) 木瓜蛋白酶papain
(EC3.4.22.2)186 144 114 35(24%) 碱性蛋白酶Subtilisin
(3.4.2.34)167 148 93 45(30%) 蛋白酶K proteinase K
(EC3.4.21.67)154 133 85 38(29%) 表 2 筛选肽段Peptide ranker评分
Table 2. Peptide ranker score for screening peptides
序号 肽段 Peptide ranker评分 序号 肽段 Peptide ranker评分 1 GF1 0.994712 16 SGF 0.947492 2 RF1 0.986556 17 GDF 0.941533 3 AF1 0.973259 18 IPM1 0.845096 4 IW 0.944175 19 DAF 0.804969 5 CP 0.943255 20 CPN 0.780467 6 DW 0.933025 21 APG1 0.745179 7 GP1 0.905487 22 SPL 0.665423 8 CL 0.879917 23 PAL 0.631952 9 VW 0.802223 24 GAL 0.594888 10 AP1 0.626856 25 DPY 0.586633 11 SP1 0.514894 26 IWKL 0.733588 12 CRF 0.98469 27 GPQY 0.643377 13 RPF 0.977766 28 PPEPL 0.684494 14 FGR 0.967011 29 DPYKL 0.579245 15 GAF 0.954769 30 EACAF 0.634993 注:1为已报道的肽。 表 3 分子对接打分表
Table 3. Molecular docking scoring
序号 肽段 -CDOCKER_ENERGY -CDOCKER_INTERACTION_
ENERGY1 EACAF 102.042 68.9447 2 IWKL 88.9743 79.7752 3 GPQY 84.6352 71.8239 4 DAF 81.4763 59.859 5 FGR 81.046 75.6303 6 GDF 80.4749 64.0784 7 DPYKL 75.5242 76.8073 8 GAF 74.7882 64.8822 9 GAL 73.5947 61.7327 10 SGF 73.5308 63.686 11 CRF 72.4341 68.7239 12 DPY 71.4961 63.9571 13 DW 68.2476 53.2253 14 IW 66.5734 63.7061 15 CPN 63.3028 65.4616 16 RPF 61.2769 71.9084 17 SPL 60.3406 67.1524 18 VW 60.2456 55.2833 19 IPI 60.1427 62.6373 20 PAL 57.1327 65.2958 21 PPEPL 54.4414 72.4935 22 CP 48.4354 53.0389 表 4 已报道的DPP-IV抑制肽的IC50值
Table 4. IC50 values of the reported DPP-IV inhibitory peptides
肽段 来源 DPP-IV IC50 参考文献 VPF 驼乳β-酪蛋白 55.1±5.8 μmol/L [3] YP 酪蛋白 658.1±8.0 μmol/L [20] LP 酪蛋白 712.5±11.0 μmol/L [20] LPLPL 酪蛋白 325.0±15.2 μmol/L [20] MPPLP 乳制品 490 μmol/L [23] ADF 鸡蛋肌球蛋白 16.83 mmol/L [24] MIR 鸡蛋肌球蛋白 4.86 mmol/L [24] MPVQA 驼乳蛋白 93.3±8.0 μmol/L [25] IPI κ-酪蛋白 3.5 μmol/L [26] IPV 鱼蛋白 5.61±0.20 μmol/L [27] LQP β-酪蛋白 118.1 μmol/L [28] GPFPILV 山羊乳酪蛋白 163.7±1.33 mmol/L [29] 表 5 肽段与DPP-IV对接最佳构象相互作用力
Table 5. Optimal conformational interaction force of peptide docking with DPP-IV
Peptides
(肽键)-CDOCKER_ENERGY
(亲和力)Residues with Hydrogen bonds
(氢键)Residues with Hydrophobic
(疏水相互作用)Residues with Electrostatic
(静电相互作用)IPI 60.1427 Asn 710(2.85 ?)
Arg 125(2.67?,2.59 ?)
Tyr 662 (2.04 ?)Phe 357(5.21 ?)
Tyr 547(5.06?, 5.21?, 5.01 ?)
Tyr 666(5.10?, 5.15?)Arg 125(2.07 ?)
Glu 205(1.76 ?)
Glu 206(2.59 ?)
Asp 663(4.68 ?)GPQY 84.6352 Arg 125(1.93 ?)
Glu 205(1.90?,2.75 ?)
Tyr 547(2.65?)
Ser 630(2.97 ?)
Tyr 631(1.89 ?)
Tyr 662(1.81 ?, 2.33 ?)
His740(2.38 ?)His 740(5.34 ?)
Val 711(5.23 ?)
Tyr 662(4.37 ?)Glu 205(1.95 ?)
Glu 206(1.99 ?)
Asp 663(4.63 ?)EACAF
10102.042 Arg125(1.90?, 2.09 ?,
2.38 ?, 2.49 ?)
Glu205(2.58 ?)
Glu206(3.00 ?)
Ser209(1.83 ?)
Ser630(2.69 ?)
Tyr631(2.97 ?)
Tyr662(1.93?, 2.34 ?)Phe357(4.12 ?) Arg 125(5.06 ?)
Glu 205(1.94 ?)
Glu 206(2.60 ?)
Tyr 662(4.41 ?)
Asp 663(5.12 ?)
Tyr 666(4.18 ?)表 6 核心靶点拓扑参数
Table 6. Core targets and topological parameters
序号 靶点 Degree 序号 靶点 Degree 1 STAT3 15 14 MME 6 2 MMP9 13 15 MMP3 5 3 SRC 13 16 MMP2 5 4 PLG 10 17 CTSL 5 5 MAPK1 10 18 DPP4 5 6 CXCR4 8 19 MMP10 4 7 MMP1 7 20 NOS2 4 8 FYN 7 21 DLG4 4 9 LCK 7 22 CPB2 4 10 F2 7 23 HDAC1 4 11 CASP3 7 24 PTGS2 4 12 SHC1 6 25 BACE1 4 13 CTSB 6 -
[1] NONGONIERMA A B, FITZGERALD R J. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity[J]. Current Opinion in Food Science,2016,8:19?24. doi: 10.1016/j.cofs.2016.01.007 [2] LI N, WANG L J, JIANG B, et al. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus[J]. European Journal of Medicinal Chemistry,2018,151:145?157. doi: 10.1016/j.ejmech.2018.03.041 [3] NONGONIERMA A B, CADAMURO C, GOUIC A LE, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70?79. doi: 10.1016/j.foodchem.2018.11.142 [4] AULIFA D L, ADNYANA I K, SUKRASNO S, et al. Inhibitory activity of xanthoangelol isolated from Ashitaba (Angelica keiskei Koidzumi) towards alpha-glucosidase and dipeptidyl peptidase-IV: In silico and in vitro studies[J]. Heliyon,2022,8(5):e09501. doi: 10.1016/j.heliyon.2022.e09501 [5] ARNIPALLI M S, NIMMU N V, BODDAPATI S N M, et al. New enantioselective liquid chromatography method development and validation of dipeptidyl peptidase IV inhibitors using a macrocyclic glycopeptide (vancomycin) chiral stationary phase under polar ionic mode condition[J]. Chirality,2022,34(7):989?998. doi: 10.1002/chir.23448 [6] HOWSE P M, CHIBRIKOVA L N, TWELLS L K, et al. Safety and efficacy of incretin-based therapies in patients with type 2 diabetes mellitus and CKD: A systematic review and meta-analysis[J]. Am J Kidney Dis,2016,68(5):733?742. doi: 10.1053/j.ajkd.2016.06.014 [7] KHALESI M, SALAMI M, MOSLEHISHAD M, et al. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry[J]. Trends in Food Science & Technology,2017,62:49?58. [8] IZADI A, KHEDMAT L, MOJTAHEDI S Y. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties[J]. Journal of Functional Foods,2019:60. [9] NONGONIERMA A B, PAOLELLA S, MUDGIL P, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin[J]. Journal of Functional Foods,2017,34:49?58. doi: 10.1016/j.jff.2017.04.016 [10] MORENO-NAVARRETE J M, ORTEGA F J, RICART W, et al. Lactoferrin increases (172Thr) AMPK phosphorylation and insulin-induced (p473Ser) AKT while impairing adipocyte differentiation[J]. Journay Clin Endocrinol Metab,2009,33(9):991?1000. [11] MORENO-NAVARRETE J M, ORTEGA F J, BASSOLS J, et al. Decreased circulating lactoferrin in insulin resistance and altered glucose tolerance as a possible marker of neutrophil dysfunction in type 2 diabetes[J]. Journay Clin Endocrinol Metab,2009,94(10):4036?4044. doi: 10.1210/jc.2009-0215 [12] KHAN F B, ANWAR I, REDWAN E M, et al. Camel and bovine milk lactoferrins activate insulin receptor and its related AKT and ERK1/2 pathways[J]. Journal of Dairy Science,2022,105(3):1848?1861. doi: 10.3168/jds.2021-20934 [13] GAMAL BADR N K R, LEILA H S, BADR M, et al. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders[J]. Iranian Journal of Basic Medical Sciences, 2017, 20(4): 338?349. [14] WANG Y, HU B, FENG S, et al. Target recognition and network pharmacology for revealing anti-diabetes mechanisms of natural product[J]. Journal of Computational Science,2020:45. [15] 侯成杰, 聂彩清, 王彦茜, 等. α-乳白蛋白源ACE抑制肽快速筛选及验证[J]. 食品科学,2021,42(24):100?107. [HOU C J, NIE C Q, WANG Y Q, et al. Rapid screening and verification of α-lactalbumin-derived ACE inhibitory peptides[J]. Food Science,2021,42(24):100?107. doi: 10.7506/spkx1002-6630-20201012-094 [16] 张颖. 牛、羊乳酪蛋白源DPP-Ⅳ抑制肽的制备、鉴定及抑制机理研究[D]. 北京: 中国农业大学, 2016ZHANG Y. Enzymatic preparation, identification and inbition mechanism of DPP-IV inhibitory peptides derived from bovine and caprine milk casein[D]. Beijing: China Agricultural University, 2016. [17] ZHANG L, HAN L, MA J, et al. Exploring the synergistic and complementary effects of berberine and paeoniflorin in the treatment of type 2 diabetes mellitus by network pharmacology[J]. European Journal of Pharmacology,2022,919:174769. doi: 10.1016/j.ejphar.2022.174769 [18] ZHAO L, ZHANG M, PAN F, et al. In silico analysis of novel dipeptidyl peptidase-IV inhibitory peptides released from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and the possible pathways involved in diabetes protection[J]. Current Research in Food Science,2021,4:603?611. doi: 10.1016/j.crfs.2021.08.008 [19] NONGONIERMA A B, FITZGERALD R J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins[J]. Journay Food Biochem,2019,43(1):e12451. doi: 10.1111/jfbc.12451 [20] NONGONIERMA A B, FITZGERALD R J. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis[J]. Food Chemistry,2014,145:845?852. doi: 10.1016/j.foodchem.2013.08.097 [21] NONGONIERMA A B, FITZGERALD R J. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides[J]. Food Chemistry,2014,165:489?498. doi: 10.1016/j.foodchem.2014.05.090 [22] WANG K, YANG X, LOU W, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432 [23] LACROIX I M E, LI-CHAN E C Y. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates[J]. International Dairy Journal,2012,25(2):97?102. doi: 10.1016/j.idairyj.2012.01.003 [24] ZHAO W, ZHANG D, YU Z, et al. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs[J]. Journal of Functional Foods,2020:64. [25] NONGONIERMA A B, PAOLELLA S, MUDGIL P, et al. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates[J]. Food Chemistry,2018,244:340?348. doi: 10.1016/j.foodchem.2017.10.033 [26] NONGONIERMA A B, MOONEY C, SHIELDS D C, et al. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors[J]. Peptides,2014,57:43?51. doi: 10.1016/j.peptides.2014.04.018 [27] HARNEDY-ROTHWELL P A, MCLAUGHLIN C M, O'KEEFFE M B, et al. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity[J]. Food Research International,2020,131:108989. doi: 10.1016/j.foodres.2020.108989 [28] NONGONIERMA A B, FITZGERALD R J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity[J]. Peptides,2016,79:1?7. doi: 10.1016/j.peptides.2016.03.005 [29] ZHANG Y, CHEN R, ZUO F, et al. Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses[J]. International Dairy Journal,2016,53:37?44. doi: 10.1016/j.idairyj.2015.10.001 [30] LACROIX I M, LI-CHAN E C. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins[J]. Peptides,2014,54:39?48. doi: 10.1016/j.peptides.2014.01.002 [31] PAN F, ZHOU N, LI J, et al. Identification of C-phycocyanin-derived peptides as angiotensin converting enzyme and dipeptidyl peptidase IV inhibitors via molecular docking and molecular dynamic simulation[J]. ES Food & Agroforestry, 2020, 2: 58?69. [32] ARAKI M, KANEGAWA N, IWATA H, et al. Hydrophobic interactions at subsite S1' of human dipeptidyl peptidase IV contribute significantly to the inhibitory effect of tripeptides[J]. Heliyon,2020,6(6):e04227. doi: 10.1016/j.heliyon.2020.e04227 [33] 钱慧琴, 彭媛, 黄秀秀, 等. 基于网络药理学探讨预知子抗抑郁的作用机制[J].食品工业科技, 2021, 42 (14): 8?15QIAN H Q, PENG Y, HUANG X X, et al. Mechanism of anti-depression mechanism of Akebiae fructus based on network pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 8?15. [34] AGGARWAL B B, KUNNUMAKKARA A B, HARIKUMAR K B, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship?[J]. New York Academy of Sciences,2009,1171:59?76. doi: 10.1111/j.1749-6632.2009.04911.x [35] JIANG X X, BIAN W, ZHU Y R, et al. Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis[J]. Diabetes Res Clin Pract,2022,185:109776. doi: 10.1016/j.diabres.2022.109776 [36] LONG M H, ZHANG C, XU D Q, et al. PM2.5 aggravates diabetes via the systemically activated IL-6-mediated STAT3/SOCS3 pathway in rats' liver[J]. Environ Pollut,2020,256:113342. doi: 10.1016/j.envpol.2019.113342 [37] 黄锦珠, 殷贝, 毕艺鸣, 等. 柴胡-白芍药对治疗2型糖尿病的网络药理学作用机制研究[J]. 中国药业,2022,31(4):43?48. [HUANG J Z, YIN B, BI Y M, et al. Mechanism of Bupleuri radix-Paeoniae alba radix drug pairs in the treatment of type 2 diabetes mellitus based on network pharmacology[J]. China Pharmaceuticals,2022,31(4):43?48. [38] 李芳, 曾欧, 罗健, 等. 硫化氢对糖尿病大鼠心肌纤维化及MAPK1/3和MMP-8表达的影响[J]. 南方医科大学学报,2015,35(4):549?552. [LI F, ZENG O, LUO J, et al. Effects of hydrogen sulfide on myocardial fibrosis and MAPK1/3 and MMP-8 expression in diabetic rats[J]. Journal of Southern Medical University,2015,35(4):549?552. doi: 10.3969/j.issn.1673-4254.2015.04.017 [39] 刘坤, 李娜, 程华, 等. 基于网络药理学的二陈丸治疗2型糖尿病的作用机制研究[J]. 中央民族大学学报(自然科学版),2022,31(1):78?85. [LIU K, LI N, CHEN H, et al. The effect of Er Chen Wan in the treatment of type 2 diabetes based on network pharmacology mechanism study[J]. Journal of MUC (Natural Sciences Edition),2022,31(1):78?85. [40] 唐卫荷, 刘湘, 张玥, 等. 基于网络药理学和分子对接探讨顾步汤治疗糖尿病足作用机制的研究[J]. 中国中西医结合外科杂志,2022,28(1):106?113. [TANG W H, LIU X, ZHANG Y, et al. Study on mechanism of Gubu decoction in treatment of diabetic foot based on network pharmacology and molecular docking[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine,2022,28(1):106?113. [41] RAJENDRAN S, QUESADA-MASACHS E, ZILBERMAN S, et al. IL-17 is expressed on beta and alpha cells of donors with type 1 and type 2 diabetes[J]. J Autoimmun,2021,123:102708. doi: 10.1016/j.jaut.2021.102708 [42] AKASH M S H, REHMAN K, LIAQAT A. Tumor necrosis factor-alpha: Role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus[J]. Journay Cell Biochem,2018,119(1):105?110. doi: 10.1002/jcb.26174 [43] LI L, EL-KHOLY W, RHODES C J, et al. Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: Role of protein kinase B[J]. Diabetologia,2005,48(7):1339?1349. doi: 10.1007/s00125-005-1787-2 [44] LIU W, SONG D O, LAU H K, et al. Combined oral administration of GABA and DPP-4 inhibitor prevents beta cell damage and promotes beta cell regeneration in mice[J]. Front Pharmacol,2017,8:362. doi: 10.3389/fphar.2017.00362 -