Protective Effect of the Anthocyanidin Extract of Hippophae rhamnoides L. on H1299 Cell Injury Induced by Hydrogen Peroxide and Effect of Nrf2/HO-1 Pathway
-
摘要: 目的:研究沙棘花青素提取物(The anthocyanidin extract of Hippophae rhamnoides L.,HRAE)对双氧水诱导H1299细胞氧化损伤的保护作用及其机制。方法:利用双氧水诱导H1299细胞氧化损伤模型,采用MTT法检测HRAE对细胞活力的影响,采用荧光探针DCFH-DA检测细胞内活性氧(Reactive oxygen species,ROS)的含量;采用试剂盒分别测定超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化氢酶(Catalase,CAT)、谷胱甘肽过氧化物酶(Glutathion peroxidase,GSH-Px)及丙二醛(Malondialdehyde,MDA)的含量;采用Western Blot法检测血红素氧合酶-1(Heme oxygenase-1,HO-1)、醌氧化还原酶-1(NAD(P)H quinine oxidoreductase 1,NQO1)、Kelch样环氧氯丙烷相关蛋白1(Kelch like ECH-associated protein 1,Keap1)和核转录因子E2相关因子(Nuclear factor E2-related factor 2,Nrf2)的蛋白质水平;采用相关数据库和软件对沙棘花青素提取物的关键活性成分表儿茶素和儿茶素与氧化应激关键靶点蛋白Nrf2进行分子对接验证。结果:MTT实验表明,在0~800 μg/mL浓度范围内HRAE对细胞活力无显著性抑制作用(P>0.05);与模型组相比,给药组中MDA水平下降,SOD、CAT和GSH-Px等活性均有不同程度升高(P<0.05或P<0.01);与模型组相比,给药组ROS的含量显著降低(P<0.05);Western Blot显示HRAE可显著(P<0.05)调节HO-1、NQO1、KEAP和Nrf2的蛋白质水平(P<0.05);分子对接结果表明表儿茶素和儿茶素与氧化应激关键蛋白Nrf2具有良好的自由结合活性。结论:沙棘花青素提取物以浓度依赖降低双氧水导致的H1299细胞氧化损伤,其机制可能与促进Nrf2/HO-1信号通路的激活有关。
-
关键词:
- 沙棘花青素提取物 /
- H1299细胞 /
- 氧化应激 /
- Nrf2/HO-1通路 /
- 活性氧
Abstract: Objective: The present study was to explore the protective effects of the anthocyanidin extract of Hippophae rhamnoides L. (HRAE) against hydrogen peroxide (H2O2) induced by oxidative damage in H1299 cells and its mechanism. Methods: The H2O2-induced oxidative damage in H1299 cells was established. MTT assay was used to detect the cell viability of HRAE. Then the content of reactive oxygen species (ROS) was measured by fluorescence probe DCFH-DA. The contents of superoxide dismutase (SOD), catalase (CAT), glutathion peroxidase (GSH-Px), and malondialdehyde (MDA) were determined respectively by kit. Also the expression of proteins heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase 1 (NQO1), Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were tested. At last, the research collaboratory for structural bioinformatics (RCSB) protein data bank and AutoDock software were used to verify the molecular docking between epicatechin and Nrf2, the key target protein of oxidative stress. Results: MTT assay showed that HRAE had no effect on cell viability in the range of 0~800μg/mL (P>0.05). Compared with model group, MDA level was decreased, while SOD, CAT and GSH-Px protein expression levels increased significantly in drug administration group (P<0.05 or P<0.01). HRAE significantly reduced the ROS levels in oxidative injured cells (P<0.05). Western Blot showed that HRAE significantly activated the protein levels of HO-1, KEAP and Nrf2 (P<0.05). Molecular docking results showed that epicatechin and catechin had good free binding activity with Nrf2 protein. Conclusion: HRAE could reduce the oxidative damage of H1299 cells induced by H2O2 in a concentration dependent manner, and its mechanism may be related to promoting the activation of Nrf2/HO-1 signaling pathway. -
图 6 HREA对H2O2诱导H1299细胞Nrf2、HO-1、PPARγ、p44/42 MAPK和KEAP1蛋白的影响
Figure 6. Effects of HREA on Nrf2, HO-1, PPARγ, p44/42 MAPK and KEAP1 protein expressions in H2O2-exposed H1299 cells
注:***表示与空白组对比差异极其显著(P<0.001);#表示与模型组对比差异显著(P<0.05);###表示与模型组对比差异极其显著(P<0.001);C表示空白组;M表示模型组;低、中、高分别表示沙棘花青素提取物50 μg·mL?1组、100 μg·mL?1组、200 µg·mL−1组。
-
[1] 张朝, 唐志书, 刘红波. 沙棘原花青素的提取、纯化及药理学研究进展[J]. 中南药学,2017,15(7):943?946. [ZHANG Zhao, TANG Zhishu, LIU Hongbo. Extraction, purification and pharmacology progress of proanthocyanidins from Hippophae rhamnoidos Linn[J]. Central South Pharmacy,2017,15(7):943?946. [2] 王宁宁, 郑文惠, 张凯雪, 等. 沙棘的化学成分、药理作用研究进展及其质量标志物的预测分析[J]. 中国中药杂志,2021,46(21):5522?5532. [WANG Ningning, ZHENG Wenhui, ZHANG Kaixue, et al. Research progress on chemical constituents and pharmacological activities of seabuckthorn and prediction of its Q-markers[J]. China Journal of Chinese Materia Medica,2021,46(21):5522?5532. [3] 崔米米. 沙棘果结合态多酚抗结肠癌效应的活性成分及分子机制[D]. 太原: 山西大学, 2020CUI Mimi. The anti-colon cancer active components and molecular mechanism of bound polyphenols from seabuckthorn berries [D]. Taiyuan: Shanxi University, 2020. [4] 付依依, 王永霞, 李月, 等. 大果沙棘中黄酮的体外抗炎及抗氧化活性研究[J]. 中国食品添加剂,2021,32(10):67?74. [FU Yiyi, WANG Yongxia, LIU Yue, et al. In vitro anti-inflammatory and antioxidant activities of flavonoids from Hippophae rhamnoides[J]. Chinese Food Additives,2021,32(10):67?74. [5] 李娜, 胡月月, 葛亮. 不同产地沙棘中总黄酮、总多酚含量测定及其抗氧化活性研究[J]. 化学与生物工程,2021,38(8):64?68. [LI Na, HU Yueyua, GE Liang. Determination of total flavonoids and total polyphenols in Hippophae rhamnoides from different producing areas and their antioxidant activities[J]. Chemical and Biological Engineering,2021,38(8):64?68. [6] 刘川, 苏锦松, 李轩豪, 等. 基于网络药理学和分子对接法筛选藏药五味沙棘散治疗新型冠状病毒肺炎(COVID-19)活性成分的研究[J]. 世界科学技术-中医药现代化,2020,22(3):632?641. [LIU Chuan, SU Jinsong, LI Xuanhao, et al. Screening of active ingredients of Tibetan medicine Wuwei seabuckthorn powder for the treatment of COVID-19 based on network pharmacology and molecular docking method[J]. World Science and Technology-Modernization of Traditional Chinese Medicine,2020,22(3):632?641. [7] 路洋洋. 沙棘叶结合态多酚中抗肿瘤活性成分的分离纯化及成分分析[D]. 太原: 山西大学, 2020LU Yangyang. Solation, purification and analysis of antitumor active constituents from seabuckthorn leaf bound polyphenols [D]. Taiyuan: Shanxi University, 2020. [8] 辛燕花, 赵三虎, 王瑜, 等. 沙棘叶不同溶剂提取物活性物质含量及抗氧化性研究[J]. 食品研究与开发,2021,42(17):44?49. [XIN Yanhua, ZHAO Sanhu, WANG Yu, et al. Study on active substance content and antioxidant activity of different solvent extracts from seabuckthorn leaves[J]. Food Research and Development,2021,42(17):44?49. doi: 10.12161/j.issn.1005-6521.2021.17.008 [9] 张谦, 李君, 胡玉霞, 等. 沙棘对心血管系统和中枢神经系统的影响[J]. 中南药学,2021,19(7):1275?1279. [ZHANG Qian, LI Jun, HU Yuxia, et al. Effects of seabuckthorn on cardiovascular system and central nervous system[J]. Zhongnan Pharmacy,2021,19(7):1275?1279. [10] GUO Z L, CHENG J Y, ZHENG L, et al. Mechanochemical-assisted extraction and hepatoprotective activity research of flavonoids from seabuckthorn (Hippopha? rhamnoides L.) pomaces[J]. Molecules,2021,26(24):7615?7615. doi: 10.3390/molecules26247615 [11] KAKATUM NARIN, ITHARAT ARUNPORN, PIPATRATTANASEREE WEERACHAI, et al. Validation of an HPLC method for quantification of anti-inflammatory markers in an ethanolic extract of Sahastara and its anti-inflammatory activity in vitro[J]. Research in Pharmaceutical Sciences,2021,16(3):227?239. doi: 10.4103/1735-5362.314821 [12] 樊金玲, 罗磊, 要萍, 等. 沙棘籽原花色素组成和结构的研究[J]. 食品科学,2008,26(1):244?249. [FAN Jinling, LUO Lei, YAO Ping, et al. Study on composition and structure of proanthocyanidins from seabuckthorn (Hippophae rhamnoides) seeds[J]. Food Science,2008,26(1):244?249. doi: 10.3321/j.issn:1002-6630.2008.01.051 [13] 张蕊红, 齐永琴, 邓天昇, 等. 脱脂沙棘籽渣中原花青素的提纯与稳定性研究[J]. 食品工业科技,2011,32(8):310?313, 356. [ZHANG Ruihong, QI Yongqin, DENG Tiansheng, et al. Purification and stability of proanthocyanidins from defatted Hippophae rhamnoides seed residue[J]. Science and Technology of Food Industry,2011,32(8):310?313, 356. [14] 欧阳健, 金家宏, 王洪伦. 响应面法优化纤维素酶协同提取沙棘籽粕原花青素的工艺研究[J]. 天然产物研究与开发,2015,27(9):1589?1594, 1563. [OUYANG Jian, JIN Jiahong, WANG Honglun. Optimization of cellulase synergistic extraction process of proanthocyanidins from seabuckthorn seed meal by response surface methodology[J]. Natural Product Research and Development,2015,27(9):1589?1594, 1563. [15] 黄国栋, 黄媛华, 黄道富, 等. 沙棘原花青素治疗溃疡性结肠炎的疗效观察[J]. 第三军医大学学报,2008,30(8):771?772. [HUANG Guodong, HUANG Yuanhua, HUANG Daofu, et al. Effect of sea-buckthorn proanthocyanidins on ulcerative colitis[J]. Journal of the Third Military Medical University,2008,30(8):771?772. [16] 牟景阳, 李玉香, 梁军, 等. 沙棘籽原花青素对糖尿病ICR小鼠心、脑组织氧化功能的影响[J]. 时珍国医国药,2012,23(8):1928?1930. [MU Jingyang, LI Yuxiang, LIANG Jun, et al. Effects of Hippophae rhamnoides seed proanthocyanidins on oxidative function of heart and brain in diabetic ICR mice[J]. Shi Zhen Traditional Chinese Medicine,2012,23(8):1928?1930. doi: 10.3969/j.issn.1008-0805.2012.08.036 [17] 徐德平, 梅金龙, 胡长鹰, 等. 沙棘籽粕原花青素的提取与抗心肌细胞缺氧活性研究[J]. 中国油脂,2009,34(11):41?44. [XU Deping, MEI Jinlong, HU Changying, et al. Extraction of proanthocyanidins from Hippophae rhamnoides seed meal and its anti-hypoxic activity against cardiomyocytes[J]. China Oils and Fats,2009,34(11):41?44. doi: 10.3321/j.issn:1003-7969.2009.11.010 [18] DAVID OSVALDO SALINAS-SáNCHEZ, ENRIQUE JIMéNEZ-FERRER, VERONICA SáNCHEZ-SáNCHEZ, et al. Anti-inflammatory activity of a polymeric proanthocyanidin from Serjania schiedeana[J]. Molecules,2017,22(6):863. doi: 10.3390/molecules22060863 [19] 龚频, 赵天雷, 翁竞玉, 等. 镉致糖尿病肾病小鼠不同组织损伤及原花青素的保护作用[J]. 陕西科技大学学报,2017,35(6):131?134. [GONG Bin, ZHAO Tianlei, WENG Jingyu, et al. Effects of proanthocyanidins on tissue damage in diabetic nephropathy mice induced bycadmium[J]. Journal of Shaanxi University of Science and Technology,2017,35(6):131?134. doi: 10.3969/j.issn.1000-5811.2017.06.026 [20] WANG Zhihua, GU Dongming, SHEN Lezhi, et al. Protective effect of anthocyanin on paraquat-induced apoptosis and epithelial-mesenchymal transition in alveolar type II cells[J]. Medical Science Monitor International Medical Journal of Experimental & Clinical Research,2018(24):7980?7987. [21] 武冬梅, 孟紫强. 沙棘油对二氧化硫所致小鼠肺氧化损伤的防护效应[J]. 环境与职业医学,2002,19(4):222?224. [WU Dongmei, MENG Ziqiang. Protective effect of seabuckthorn oilon lung oxidative injury induced by sulfur dioxide in mice[J]. Environmental and Occupational Medicine,2002,19(4):222?224. doi: 10.3969/j.issn.1006-3617.2002.04.005 [22] 田建华. 沙棘原花青素测定方法学考察及含量测定[J]. 山西林业科技,2021,50(4):11?13. [TIAN Jianhua. Methodological inspection and content determination of proanthocyanidins in Hippophae rhamnoides[J]. Shanxi Forestry Science and Technology,2021,50(4):11?13. doi: 10.3969/j.issn.1007-726X.2021.04.004 [23] JIANG Chao, LUO Ping, LI Xian, et al. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation[J]. Cell Stress & Chaperones,2020,25(3):395?406. [24] HANG Hang, WANG Likun, REN Siying, et al. Activating PPARγ increases NQO1 and γ-GCS expression via Nrf2 in thrombin-activated microglia[J]. Curr Med Sci,2020,40(1):55?62. doi: 10.1007/s11596-020-2146-8 [25] NIU Hui, ZHANG Hua, WU Fuxin, et al. Proteomics study on the protective mechanism of soybean isoflavone against inflammation injury of bovine mammary epithelial cells induced by Streptococcus agalactiae[J]. Cell Stress and Chaperones,2021,26(1):91?101. doi: 10.1007/s12192-020-01158-1 [26] ZHANG Linli, CHEN Jun, LIAO Hejing, et al. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin inRAW 264.7 cells and a zebrafish model[J]. Journal of Functional Foods,2020,75:104217. doi: 10.1016/j.jff.2020.104217 [27] 刘思远, 李志鹏, 彭召云, 等. 花青素对肺癌细胞相关炎性因子信号转导通路作用的研究进展[J]. 中国实验方剂学杂志,2017,23(14):219?225. [LIU Siyuan, LI Zhipeng, PENG Shaoyun, et al. Research progress of anthocyanins in the signaling pathway of inflammatory factors related to lung cancer[J]. Chinese Journal of Experimental Formulae,2017,23(14):219?225. [28] 魏猛, 徐孟川, 李述刚, 等. 原花青素拮抗砷诱导人肺上皮细胞氧化损伤的研究[J]. 毒理学杂志,2018,32(1):25?29. [WEI Meng, XU Mengchuan, LI Shugang, et al. Antagonistic effect of proanthocyanidins on oxidative damage of human lung epithelial cells induced by arsenic[J]. Chinese Journal of Toxicology,2018,32(1):25?29. [29] 张玉蝶, 李欣, 何晓艳, 等. 余甘子醇提物对硅肺小鼠的保护作用及与Nrf2/ARE信号通路相关性[J/OL]. 中国实验方剂学杂志: 1-8[2023-04-02]. http://kns.cnki.net.reflektpolarized.com/kcms/detail/11.3495.R.20220321.1938.036.html.ZHANG Yudie, LI Xin, HE Xiaoyan, et al. Protective effect of alcohol extract of Polyphyllanthus polyphyllanthus on silicosis mice and its correlationwith Nrf2/ARE signaling pathway [J]. Chinese Journal of Experimental Formulae: 1-8[2023-04-02]. http://kns.cnki.net.reflektpolarized.com/kcms/detail/11.3495.R.20220321.1938.036.html. [30] 尤锟, 刘远新. 运动预适应干预低压低氧诱发肺损伤模型大鼠Nrf2/ARE信号通路的变化[J]. 中国组织工程研究,2022,26(17):2702?2707. [YOU Kun, LIU Yuanxin. Effects of exercise preconditioning on Nrf2/ARE signaling pathway in hypoxia induced lung injury model rats[J]. Chinese Tissue Engineering Research,2022,26(17):2702?2707. doi: 10.12307/2022.538 [31] CHEN Jiang, JIANG Shi, SHAO Huijiang, et al. CRISPR-Cas9-based genome-wide screening identified novel target for treating sorafenib-resistant hepatocellular carcinoma: A cross-talk between FGF21 and the NRF2 pathway[J/OL]. Science China Life Sciences: 1-19[2023-04-02]. http://kns.cnki.net.reflektpolarized.com/kcms/detail/11.5841.Q.20220401.1718.002.html. [32] KRISTIN Z, JOHANNES B, BARBARA M, et al. Activated AMPKboosts the Nrf2/HO-1 signalingaxis: A role for the unfolded protein response[J]. Free Radical Biology and Medicine,2015,88:417?426. doi: 10.1016/j.freeradbiomed.2015.03.030 [33] 赵红英, 谷倩倩, 王文娟. 基于Keap1/Nrf2/ARE信号通路探讨黄芪甲苷对脂多糖诱导的小鼠急性肺损伤的保护作用[J]. 中国煤炭工业医学杂志,2021,25(6):566?571. [ZHAO Hongying, GU Qianqian, WANG Wenjuan. Protective effect ofastragaloside IV on lipopolysaccharide induced acute lung injury in mice based on Keap1/Nrf2/ARE signaling pathway[J]. Chinese Medical Journal of Coal Industry,2021,25(6):566?571. [34] DUNIGAN K, LI Q, LI R, et al. The thioredoxin reductase inhibitor auranofin induces heme oxygenase-1 inlung epithelial cellsvia Nrf2-dependent mechanisms[J]. Am J Physiol Lung Cell Mol Physiol,2018,315:L545?L552. doi: 10.1152/ajplung.00214.2018 [35] PARK E J, KIM Y M, PARK S W, et al. Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice[J]. Food Chem Toxicol,2013,55:386?395. doi: 10.1016/j.fct.2012.12.027 -